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Foreword

This volume is a selection of best papers presented at the CoreGRID In-
tegration Workshop 2006 (CGIW’2006), which took place on 19–20 October
2006 in Krakow, Poland.

The workshop was organised by the Network of Excellence CoreGRID
funded by the European Commission under the sixth Framework Programme
IST-2003-2.3.2.8 starting September 1st, 2004 for a duration of four years.
CoreGRID aims at strengthening and advancing scientific and technological
excellence of Europe in the area of Grid and Peer-to-Peer technologies. To
achieve this objective, the network brings together a critical mass of well-
established researchers from forty institutions who have constructed an am-
bitious joint programme of activities.

The goal of the workshop is to promote the integration of the CoreGRID
network and of the European research community in the area of Grid and P2P
technologies, in order to overcome the current fragmentation and duplication
of efforts in this area.

The list of topics of Grid research covered at the workshop included but was
not limited to:

knowledge and data management;

programming models;

system architecture;

Grid information, resource and workflow monitoring services;

resource management and scheduling;

systems, tools and environments;

trust and security issues on the Grid.

Priority at the workshop was given to work conducted in collaboration between
partners from different research institutions and to promising research propos-
als that can foster such collaboration in the future.

The workshop was open to the members of the CoreGRID network and
also to the parties interested in cooperating with the network and/or, possibly
joining the network in the future.
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Cǎtǎlin L. Dumitrescu Mathematics and Computer Science Department,
The University of Münster
(dumitres@uni-muenster.de)

Jan Dünnweber Mathematics and Computer Science Department,
The University of Münster
(duennweb@uni-muenster.de)

Dick H.J. Epema Electrical Eng., Mathematics and Computer Science De-
partment, Technical University of Delft
(d.h.j.epema@tudelft.nl)

Renato Ferrini Information Science and Technologies Institute, CNR,
56126 Pisa, Italy
(renato.ferrini@isti.cnr.it)

Paraskevi Fragopoulou Institute of Computer Science, Foundation for Re-
search and Technology-Hellas, P.O. Box 1385, 71110 Heraklion-Crete, Greece
(fragopou@ics.forth.gr)

Wlodzimierz Funika Institute of Computer Science, AGH, al. Mickiewicza
30, 30-059 Kraków, Poland
(funika@agh.edu.pl)

Vladimir Getov School of Computer Science, University of Westminster,
Watford Rd, Northwick Park Harrow HA1 3TP, UK
(v.s.getov@westminster.ac.uk)

Stefano Giordano Department of Information Engineering, University of
Pisa, 56100 Pisa, Italy
(s.giordano@iet.unipi.it)



xiv Contributing Authors

Sergei Gorlatch Mathematics and Computer Science Department,
The University of Münster
(gorlatch@uni-muenster.de)

Francesc Guim Barcelona Supercomputing Center, Universitat Politècnica
de Catalunya (UPC), Spain
(francesc.guim@bsc.es)

William Hoarau LRI-CNRS 8623 and INRIA Grand Large, Université
Paris Sud XI, France
(hoarau@lri.fr)

Mikael Högqvist Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Takusstrasse 7, D-14195 Berlin-Dahlem, Germany
(hoegqvist@zib.de)

Fabrice Huet INRIA Sophia Antipolis, 2004, route des Lucioles, BP 93,
France
(fabrice.huet@inria.fr)

Mathieu Jan Campus de Beaulieu, 35042 Rennes, France
(mathieu.jan@irisa.fr)

Thilo Kielmann Dept. of Computer Science, Vrije Universiteit, Amsterdam,
The Netherlands
(kielmann@cs.vu.nl)

Derrick Kondo Laboratoire de Recherche en Informatique/INRIA Futurs,
France
(dkondo@lri.fr)
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Abstract Unstructured P2P systems exhibit a great deal of robustness and self-healing at
the cost of reduced scalability. Resource location is performed using a broadcast-
like process called flooding. The work presented in this paper comprises an ef-
fort to reduce the overwhelming volume of traffic generated by flooding, thus in-
creasing the scalability of unstructured P2P systems. Using a simple hash-based
content categorization method the Ultrapeer overlay network is partitioned into
a relatively small number of distinct subnetworks. By employing a novel index
splitting technique each leaf peer is effectively connected to each different sub-
network. The search space of each individual flooding is restricted to a single
partition, and is thus considerably limited. This reduces significantly the vol-
ume of traffic produced by flooding without affecting at all the accuracy of the
search method. Experimental results demonstrate the efficiency of the proposed
method.

Keywords: Peer-to-peer, resource location, flooding, overlay network, network partition.

∗Paraskevi Fragopoulou is with the Department of Applied Informatics and Multimedia, Technological
Educational Institute of Crete, Heraklion, Greece.
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1. Introduction

Peer-to-peer (P2P) systems have recently gained much popularity in the re-
search community as well as among the general public. Researchers show
increasing interest in this paradigm because of its inherent scalability and ro-
bustness, which promises to enable the development of global-scale, cooper-
ative, distributed applications. Different entities, under different authoritative
control, interconnect and cooperate to offer services to each other, each of them
acting both as a server and as a client, thus the term peers for the participating
entities.

Existing P2P systems fall into two main categories. Structured P2P systems
impose a certain order on the connectivity of the participating peers which is
reflected in the structure of the overall network. All files stored in the system
are indexed in a distributed manner by employing a Distributed Hash Table
(DHT), thus enabling efficient resource location in time usually logarithmic
to the number of peers. The drawback of this method however is that the
maintenance of such a rigid structure limits the ability of P2P systems to heal
themselves efficiently in the face of failures and thus render them less robust,
albeit more scalable.

On the other hand, unstructured P2P systems do not impose a certain struc-
ture to the network. Those systems are aptly named unstructured since each
peer is directly connected to a small set of other peers, called neighbours, mak-
ing the network more ad-hoc in nature. The absence of a structure makes such
systems much more robust and highly self-healing compared to structured sys-
tems, however, at the cost of reduced scalability. To exploit peer heterogeneity
to the system’s benefit, in [13, 4] a distinction between peers was introduced
and a two level hierarchy of peers was constructed. High bandwidth peers,
the Ultrapeers (also known as Superpeers), form an unstructured overlay net-
work, while peers with low bandwidth, the Leaves, are connected only to Ultra-
peers. Each Ultrapeer has an index of all the files contained in its Leaves. This
modification allows the system to retain its simplicity while offering improved
scalability.

Due to the lack of a particular file indexing method, unstructured P2P sys-
tems employ a broadcast-like process called flooding for resource location. A
peer looking for a file issues a query which is broadcast in the network, until
all peers have received the request or until the query propagates a predefined
maximum number of hops away from its source (Time-To-Live hops or TTL).
Flooding generates a large number of messages, reducing the scalability of the
method. Due to the completely decentralized nature of flooding, each peer
may receive the same request through a number of different neighbours. Those
duplicate messages often exceed in number the non-duplicate ones. For a flood
targeting the entire network, the number of duplicate messages is d − 2 times
the number of non-duplicate messages, where d is the degree of the overlay



Partitioning Unstructured Peer-to-Peer Systems 3

network (average number of peers neighbours). Recent work was carried out
in P2P systems with the aim of reducing the number of duplicates generated
[8]. However, even if all duplicate messages are eliminated, flooding would
still not scale well, since the cost of flooding a request to the entire network is
relative to the total number of peers. On the other hand, limiting the number of
hops a query propagates, achieves improved scalability at the cost of reduced
network coverage (defined as the percentage of peers that receive a request).
When a two level hierarchy of peers is involved, any request originating at a
Leaf peer is forwarded through the Ultrapeers it is connected to, while flooding
is performed only at the Ultrapeer overlay network.

The aim of the work presented in this paper is to improve the scalability of
flooding by reducing the number of peers that need to be contacted on each
request, without decreasing the probability of query success (accuracy of the
search method). The proposed method partitions the Ultrapeer overlay net-
work into distinct subnetworks. Using a simple hash-based categorization of
keywords the Ultrapeer overlay network is partitioned into a relatively small
number of distinct subnetworks. By employing a novel index splitting tech-
nique each Leaf peer is effectively connected to each different subnetwork.
The search space of each individual flooding is restricted to a single partition,
thus the search space is considerably limited. This reduces the overwhelming
volume of traffic produced by flooding without affecting at all the accuracy
of the search method. Experimental results demonstrate the efficiency of the
proposed method.

The remainder of this paper is organized as follows: Following the related
work section, the method used to partition the overlay network is presented
in Section 3. In Section 4 the simulation details along with the experimental
results are presented. We conclude in section 5.

2. Related Work

In an effort to alleviate the large volumes of unnecessary traffic produced
during flooding several variations have been proposed. Schemes like Directed
Breadth First Search (DBFS) [12] forward requests only to those peers that
have often provided results to past requests, under the assumption that they
will continue to do so. Interest-based schemes, like [10] and [5] aim to cluster
together (make neighbours of) peers with similar content, under the assump-
tion that those peers are better suited to provide each other’s needs. Both those
systems try to contact peers that have a higher probability of containing the re-
quested information. Such schemes usually exhibit small gains over traditional
flooding.

Another technique widely used in unstructured P2P systems today, is 1-hop
replication. One-hop replication dictates that each peer should send to all of its
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Figure 1. The Gnutella 2-tier architecture.

immediate neighbours the index of the files it contains. Using this information
during the last hop propagation of a request at the Ultrapeer level, the request
is forwarded exclusively to those last hop Ultrapeers that contain the requested
file. One-hop replication reduces the number of messages generated during the
last hop of flooding [7], which constitutes the overwhelming majority of the
traffic generated during the entire flooding. Simple calculations show that 1-
hop replication requires d times fewer messages to spread to the whole network
compared to naive flooding, where d is the degree of the network. It is easy
to prove that in order to flood an entire, randomly constructed, network that
employs 1-hop replication, one need only reach 3/d of the peers during all hops
but the last. In today’s Gnutella, where the average degree is 30, one would
need to reach 10% of the peers and then use 1-hop replication to forward the
query to the appropriate last hop peers, in order to reach the entire network.

Unstructured P2P systems implement 1-hop replication by having peers ex-
change bloom filters of their indices. A Bloom filter [3] is a space efficient way
to represent a set of objects (keys). They employ one or more uniform hash
functions to map each key to a position in an N -sized binary array, whose bits
are initially set to 0. Each key is mapped through each hash function to an ar-
ray position which is set to 1. To check for the participation of some key in the
set, the key is hashed to get its array position. If that array position is set to 1,
the bloom filter indicates key membership. Bloom filters require considerably
less space than the actual set, which is accompanied by some loss of precision
translated in the possibility of false positives. This means that a bloom filter
may indicate membership for some key that does not belong to the set (more
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than one keys mapped to the same position). It cannot however indicate ab-
sence of a key which is in the set (false negative).

In Gnutella 2 [1] which uses a 2-tier architecture, each Leaf node sends its
“list of keywords" in the form of a bloom filter to all Ultrapeers it is connected
to. Each Ultrapeer produces the OR of all the bloom filters it receives from
its Leaves (approximately 30 Leaf nodes per Ultrapeer) and transmits this col-
lective bloom filter to all its neighboring Ultrapeers to implement the 1-hop
replication. Ultrapeers flood queries to the overlay network on the Leave’s be-
half. Flooding is only performed at the Ultrapeer level where 1-hop replication
is implemented. Whenever an Ultrapeer receives a request this is targetedly
forwarded only down to those Leaves that contain the desired information (ex-
cept in the case of false positives). Fig. 1 shows a schematic representation of
the 2-tier architecture.

Another approach that has been used in the literature to make resource lo-
cation in unstructured P2P systems more efficient is the partitioning of the
overlay network into subnetworks using content categorization methods. A
different subnetwork is formed for each content category. Each subnetwork
connects all peers that posses files belonging to the corresponding category.
Subnetworks are not necessarily distinct. A system that exploits this approach
is the Semantic Overlay Networks (SONs) [6]. SONs use a semantic cate-
gorization of music files based on the music genre they belong to. The main
drawback of this method is the semantic categorization of the content. In file-
sharing systems for instance, music files rarely contain information about the
genre they belong to and when they do so, each of them probably uses a dif-
ferent categorization of music. In SONs, an already existing, online, music
categorization database is used. This database adds a centralized component
in the operation of the network. Notice that 1-hop replication can be employed
in conjunction with this scheme, inside each subnetwork. However, the fact
that each peer may belong to more than one subnetwork, reduces the average
degree of each subnetwork and thus, the efficiency of the 1-hop replication.

3. The Partitions Design

The system we propose in this paper allows for the partitioning of any type
of content. More specifically, we propose the formation of categories based on
easily applicable rules. Such a simple rule is to apply a uniform hash function
on each keyword describing the files. This hash function maps each keyword
to an integer, from a small set of integers. Each integer defines a different
category. We thus categorize the keywords instead of the content (files names)
itself. Given a small set of integers, it is very likely that each peer will contain
at least one keyword from each possible category.
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Figure 2. Illustration of the Gnutella network and the Partitions design.

Figure 3. Gnutella and Partitions bloom filters.

In the Partitions design, each Ultrapeer in the system is randomly and uni-
formly assigned responsibility for a single keyword category, by randomly se-
lecting an integer from the range set of the hash function used to categorize the
keywords. Ultrapeers responsible for the same category form a distinct sub-
network. Leaves connect to one Ultrapeer per subnetwork and send to it all
the keywords belonging to that category. Thus, an innovative index splitting
technique is used. Instead of each Leaf sending its entire index (in the form of
a bloom filter) to an Ultrapeer, each Leaf splits its index (keywords) based on
the defined categories and distributes it to one Ultrapeer per category. Notice
that peers operating as Ultrapeers also operate as Leaves at the same time (have
a dual role). Even though in this design each Leaf connects to more than one
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Ultrapeers, the volume of information it collectively transmits is roughly the
same since each part of its index is send to a single Ultrapeer. Each Ultrapeer
sends to its neighboring Ultrapeers all the aggregate indices of its Leaf nodes to
implement 1-hop replication. In Fig. 2 we can see a schematic representation
of the Partitions design. Fig. 3 illustrates the difference between the Gnutella
and the Partitions bloom filters.

This separation of Ultrapeers from content has the benefit of allowing them
to be responsible for a single keyword category. The benefit of this is two-fold.
First, it reduces the size of the subnetworks since they are completely discrete
(at the overlay level). Secondly, it allows each Ultrapeer to use all its Ultrapeer
connections to connect to other Ultrapeers of the same subnetwork, increasing
the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two drawbacks to this design. The first one is due to
the fact that each Leaf connects to more than one Ultrapeers, one per content
category. Even though each Leaf sends collectively the same amount of index
data to the Ultrapeers upon connection as before, albeit distributed, however
it requires more keepalive messages to ensure that its Ultrapeers are still op-
erating. Keepalive messages however are very small compared to the average
Gnutella protocol message. In addition, query traffic is used to indicate liveli-
ness most of the time, thus avoiding sending keepalive messages. The second
drawback arises from the fact that each subnetwork contains information for a
specific keyword category. Requests however may contain more than one key-
words and each result should match all of them. Since each Ultrapeer is aware
of all keywords of its Leaves that belong to a specific category, it may forward
a request to some Leaf that contains one of the keywords but not all of them.
This reduces the efficiency of the 1-hop replication at the Ultrapeer level and
at the Ultrapeer to Leaf query propagation. This drawback is balanced as fol-
lows. Even though the filtering is performed using one keyword only, Leaves’
bloom filters also contain one category of keywords only, making them more
sparse and thus reducing the probability of a false positive. Furthermore, the
most rare keyword can be used to direct the search, thus further increasing the
effectiveness of the search method. Finally, we also experimented with send-
ing the bloom filters with all keyword types to every Ultrapeer, regardless of
category, although Ultrapeers still extract and use only keywords of the same
category they belong to form their aggregate bloom filter in order to implement
1-hop replication.

4. Experimental Results

In this section, we shall present the results from the simulations we con-
ducted, in order to measure both the efficiency of the Partitions scheme in
terms of cost of flooding (in messages) and maintenance costs.
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We assumed a peer population of 2 million, a number reported by LimeWire
Inc [2]. Each Ultrapeer in the Gnutella network serves 30 Leaves, a number
obtained from real-world measurements [11]. In addition, each peer contains a
number of files (and hence keywords) derived from a distribution also obtained
from real-world measurements in [9].

Each Ultrapeer in the Partitions design serves 300 Leaves since we assume
a number of 10 content categories and thus subnetworks. We perform a large
number of floods, each designed to return at least a thousand query results
before terminating. Table 1 shows the ratio of the average number of messages
per flood for the Partitions design over the average number of messages per
flood in Gnutella. Replication means that each Leaf sends all its keywords to all
Ultrapeers it is connected to, regardless of category. For example, in the case of
replication, flooding in the Partitions design generates 5.5 times less messages
than flooding in Gnutella, in order to return the same number of results per
query. We should emphasize that the drawback of filtering using only one
keyword is balanced by the fact that Leaf indices are sparser (since they contain
only one keyword category),thus produce less false positives. The main benefit
comes from the message reduction due to the partitioning of the network and
therefore the reduction of the search space. Each Partitions bloom filter (i.e.
containing keywords of a certain category) has the length of a Gnutella bloom
filter. Thus, one can roughly think of all the bloom filters of a single Partitions
leaf as a (distributed) Gnutella bloom filter of 10 times the length (due to the 10
category types). However the bandwidth needed to transfer such a bloom filter
is not 10 times that of a Gnutella bloom filter, mainly because sparser bloom
filters are compressed more efficiently.

Table 1. Flooding efficiencies.

Ratio

No replication 4.2

Replication 5.5

In order to measure the maintenance cost of Gnutella and Partitions, we
focus on the operation of a single Ultrapeer, because the load of Leaves is
negligible in both systems compared to Ultrapeers load since flooding is per-
formed at the Ultrapeer overlay. In both cases we simulated three hours in the
life of a single Ultrapeer, with Leaves coming and going. Leaves have an av-
erage lifetime of 10 minutes, whereas Ultrapeer neighbours have an average
lifetime of 1 hour. Each time a Leaf is connecting to the Ultrapeer, it sends its
index information, which is propagated by the Ultrapeer to its thirty Ultrapeer
neighbors. In addition, we assumed that, periodically , each Ultrapeer receives
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Figure 4. Maintenance traffic load for
Gnutella and Partitions using Bloom Fil-
ters. Incoming, Outgoing and Total traffic.

Figure 5. Query traffic load for Gnutella
and Partitions using Bloom Filters. Incom-
ing, Outgoing and Total traffic.

Figure 6. Operational traffic load for Gnutella and Partitions using Bloom Filters. Incoming,
Outgoing and Total traffic.

a small keep-alive message from each Leaf and replies with a similar message
to each one of them, unless a query and a reply were exchange during the spec-
ified period. For each communication taking place, we measured the incoming
or outgoing traffic in bytes, in order to estimate the bandwidth requirements.

There are two modifications in this scenario, between Gnutella and Parti-
tions. In Partitions, the number of Leaves per Ultrapeer is 300. In addition,
the process of computing the size of the index information sent to the Ultra-
peer differs greatly. For Gnutella, we have used the code by LimeWire [2], the
most popular Gnutella client, to construct the bloom filter of each Leaf. We
randomly decided on the number of files shared by each Leaf, based on the file
sharing distribution per peer presented in [9]. We then extracted this number of
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files from a list of filenames obtained from the network by a Gnutella crawler
developed in out lab. Those filenames were fed to the LimeWire bloom filter
generation code, which produced the corresponding bloom filter in compressed
form, i.e., the way it is sent over the network by LimeWire servents. Thus we
constructed the actual bloom filter, although what we really need in this case is
just its size. In the case of Partitions, we likewise computed the number of files
to be shared by each Leaf. We extracted again the same number of filenames
from the list of available filenames.

In addition to simulations for the Partitions scheme, we also run simula-
tions for a modified version called Replication. In the Partitions scheme, each
bloom filter sent to an Ultrapeer only contained appropriate keywords (of the
same category as the corresponding Ultrapeer). In the Replications scheme, we
used replication, i.e. each bloom filter contained all the keywords of the Leaf,
regardless of category. In addition, positions of keywords of the correspond-
ing category as the Ultrapeer were set in the bloom filter to the value of two
instead of one. (This bloom filter essentially distinguishes between keywords
of the appropriate category and the rest of the categories).

Fig. 4 shows the results of the simulation for the cost of maintaining the
structures of Gnutella and Partitions, without any query (flood) traffic. From
this figure it is obvious that, as expected, the maintenance cost of partitions
is higher than that of Gnutella, but not that much. As we will see in the next
paragraph the gains incurred during the operational phase of the two systems
outweighs the increased maintenance costs.

We then focused our attention to the query traffic load. Measurements con-
ducted in our lab showed that, on the average, each Ultrapeer generates 36
queries per hour (i.e., queries initiated by itself or its Leaves). This adds up
to approximately 2000 queries per second generated anywhere in the Gnutella
network. In addition, we observed a large number of Gnutella queries in order
to find the distribution of the number of keywords in each query. Thus, accord-
ing to those observations, during the simulations we assumed that 20% of the
queries contain 1 keyword, 30% contain two, another 20% contain three and
finally a 30% contain 4 keywords.

In our simulation, we assumed that the aim of each flood (both in Gnutella
and Partitions) is to reach the entire network, or produce a fixed number of
results, whichever comes first. As we mentioned before, such a flood that
aims to reach the entire network would need to reach 1

10 th of the Gnutella’s
network (or a Partitions’ subnetwork) during all hops of flooding except the
last. This means that the Ultrapeer in our simulations has a probability of
0.1 to receiving each query. In addition, every time this does not occur, it
has another opportunity to receive the query during the last hop, depending
on its bloom filter (in case the searched keywords match in the bloom filter).
Should the Ultrapeer receive a query, it is assumed to propagate it to its Leaves,
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again depending on their bloom filters or index (again depending on a possible
keyword match by the bloom filter). Fig. 6 shows the comparison in the traffic
load of Gnutella and Partitions, including maintenance and query traffic. We
used a size of 40 bytes for each query. In reality, the size of a query can be
up to a few hundred bytes, if XML extensions are used. This means that the
performance gains described here are smaller compared to the ones we expect
to see in the real world. In addition, for every 1400 bytes for each message sent,
we added 40 bytes for the TCP and IP header. From these figures it is evident
that Partitions outperform Gnutella in operational costs, in every case. Finally
in Fig. 5 one can see the query traffic load alone (without the maintenance
traffic) for both the Gnutella and the Partitions Ultrapeer.

5. Conclusions

In this paper, we have described a novel approach to reducing the message
cost of querying an unstructured P2P ork. A simple model has been described
to illustrate that the benefits obtained from our scheme can be as high as an
order of magnitude. Work is being carried out to measure the performance of
our scheme, while varying the number of partitions. Furthermore, the benefit of
Leaves communicating their full index (actual keywords) to Ultrapeers instead
of bloom filter is currently exploited.
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Abstract We present a scheme based on the comparison of intermediate checkpoints that
accelerates the detection of computing errors of bag-of-tasks executed on vol-
unteer desktop grids. Currently, in the state-of-the-art, replicated task execution
is used for result validation. Our method also uses replication, but instead of
only comparing results at the end of the replicated computations, we validate
ongoing executions by comparing checkpoints of their intermediate execution
points. This scheme significantly reduces the time to detect a computational
error, which we show with both theoretical analysis and simulation results. In
particular, we develop a model that gives the benefit of intermediate checkpoint-
ing as a function of checkpoint frequency and error rate, and we confirm this
model with simulation experiments. We find that with an error rate of 5% and
checkpoint frequency of 20 times per task, the gain is as high as 35% compared
to the case where error detection is done only at the end of task execution; for
higher checkpoint frequencies or high error rates, the benefits are even greater.
In addition, when an erroneous computation is detected at an intermediate ex-
ecution point, we propose the immediate replacement of that computation with
a correct replica from another worker. In this way, useful execution and further
validation can continue from that point onward instead of being delayed.

Keywords: Desktop grid, error detection, checkpointing, redundancy
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1. Introduction

Desktop grids, which harvest volunteer computing resources, have gained
tremendous momentum in recent years attracting hundreds of thousand of vol-
unteers. Currently, more than a dozen large-scale projects exist, and new ones
are being created regularly [6]. The advent of open source and easy-to-setup
middleware frameworks like BOINC [4] and XtremWeb [10] have lowered the
requirements and skills needed to exploit volunteered resources. To encourage
volunteers, projects publish online rankings of contributed work. Interestingly,
these rankings cause fierce competition, and attract even more dedicated vol-
unteers [11].

Although desktop grids have a high return-on-investment, they also have
major limitations, namely resource volatility and result correctness. The
volatility of desktop grids is caused not only by hardware and software faults of
computing systems, but also by resource owners who retain full priority in ac-
cessing and managing their desktop. Thus, owners reclaiming their resources
might force hosted applications to be interrupted. Checkpointing is a common
solution to cope with volatility, and some support exists for application-level
checkpointing in desktop grid middleware, such as BOINC and XtremWeb [15].

Result correctness of computations performed on volunteer resources is an
important issue, since interpreting incorrect results as correct can be worse
than no results at all. A major source of result incorrectness is faulty hardware.
In [4], Anderson cites overclocking as a significant cause of faulty computa-
tions in projects that resort to the BOINC framework. The fierce competition
and rivalry among volunteers sometimes may also cause unhealthy behavior.
Some users try to increase, not always by honest means, their credits. In some
extreme cases, users resort to dishonest tricks to collect undue credits, like
fabricating results that require much less computation than the real ones [12].
These users are known as lazy cheaters. Finally, another type of malicious user
– saboteur – might simply act for the sole purpose of ruining the computation,
without concern for credits [14]. In contrast to lazy cheaters, saboteurs may
be difficult to counter since they may be resourceful and committed to perform
everything they can to disrupt the computation.

Commonly, desktop grid projects resort to redundancy as a sabotage-
tolerance technique [8]. Under this approach, the same task is distributed to
r different worker machines (hopefully unrelated) to avoid collusion. When
completed, results are compared and there is a majority vote. If a result has
majority, that is, more than r/2 tasks return this result or an equivalent one 1,
it is interpreted as the correct one and the task is flagged as completed. On the

1Some projects dependent on floating-point operations might have slightly different results when executed
in different platforms, but yet equivalent from the project point-of-view [17].
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contrary, if no consensus can be found, all results are discarded and the task is
marked for rescheduling.

In this paper, we present a checkpoint and replication-based error detection
technique that exploits checkpointing and redundancy. The technique com-
pares intermediate checkpoint digests of redundant instances of a same task. If
differences are found, the conclusion is that at least one execution is wrong. In
contrast to the simple redundancy mechanism, where diverging computations
can only be detected after a majority of tasks have completed, intermediate
checkpoint comparison allows for earlier and more precise detection of errors,
since execution divergence can be spotted at the next checkpoint following
any error. This allows one to take proactive and corrective measures without
having to wait for the completion of the tasks, therefore permitting faster task
completion, since faulty tasks can immediately be rescheduled.

To complement the checkpoint-based comparison methodology for error de-
tection, we propose a checkpoint-based replication technique whose goal is to
promote fast completion of redundant instances of a same task, in order to
speed up validation of results. Specifically, under the proposed technique, the
replication of a redundant instance is scheduled as soon as the instance is de-
termined to be erroneous or lagging behind. To minimize the computation to
be redone, the technique tries to initialize the replica from a validated inter-
mediate checkpoint. The technique extends the checkpoint-based verification,
promoting a balanced execution of redundant instances, since validation can
only occur when a majority of results have been completed. Moreover, since
credits are given to workers only after results have been validated, this also ac-
celerates validation and proper credit assignment, which is an important issue
for a considerable percentage of volunteers [11].

Specifically, the contributions of the paper are as follows. First, we construct
a model that estimates the benefit of comparing intermediate checkpoints as a
function of the probability of task error and checkpoint frequency. Second, we
propose the use of immediate replacement of erroneous or slowly executing
tasks to prevent delays of task execution and validation. Third, we conduct
simulations and analysis of results using our novel approach, which confirms
the benefits estimated by our theoretical model.

The remainder of this paper is organized as follows. In Section 2, we define
the assumptions used by the comparison techniques that are based on check-
pointing and replication. In Section 3, we present our technique for error de-
tection through checkpoint comparison and our theoretical model, while in
Section 4, we introduce checkpoint-based task replication. In Section 5, we de-
scribe our simulation setup and results. In Section 6, we discuss related work.
Finally, in Section 7, we summarize the conclusions and describe future work.
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2. Assumptions and Definitions

We assume a large-scale computing project, where a central supervisor co-
ordinates the whole computation, by distributing tasks to requesting volunteer
worker machines (henceforth workers). The tasks that comprise an application
are sequential and independent from each others. Furthermore, we assume that
all communications occur exclusively between workers and the supervisor. To
circumvent Internet asymmetries [16] caused by NAT and firewall schemes,
communications are worker-initiated. Thus, the supervisor is passive in the
sense that it can only answer to worker requests. Note that this communication
model is the one adopted by several desktop grid frameworks [10, 4].

At the worker level, fault-tolerance is achieved through application-level
checkpointing [15]. We only consider tasks which can individually be broken
into m temporal segments St = {St1 , . . . , Stm}. The intermediate computa-
tional states can be checkpointed at the end of each temporal segment, yielding
the checkpoint set C = {C1, . . . , Cm}, with Cm taken at the end of the com-
putation. Projects with long duration tasks (weeks or months long), such as
for example the climateprediction.net, whose tasks last for months on state-
of-the-art machines, can benefit most from checkpointing. Whenever a task
is interrupted (because the user switches the machine off, or for some other
reason), its execution can be resumed from the last stable checkpoint Cj .

Depending on the application, checkpoints can get quite large, in the range
of tens to hundreds of megabytes in size, and thus it might be inefficient to
transfer and compare them. (For the purpose of comparison, all checkpoints
need to be on the machine that effectively performs the comparison; thus at
least one of them has to be transferred.) For comparison purposes, we assume
that message digests of checkpoints (provided by the MD5 [13] and the SHA-
family [9] algorithms, for example) can be used. Due to their reduced and
predictable dimensions, message digests can be easily exchanged and com-
pared. Furthermore, an application-specific pre-processing function might be
deployed to normalize checkpoints (for instance, for removing task-dependent
identifiers) prior to the use of a generic digest algorithm. For the purpose of
comparison, checkpoint Cj is represented by the message digest MD(Cj). Ad-
ditionally, the comparison of checkpoints needs to be executed between what
we term as equivalent checkpoints, that is, checkpoints from different replicas
of a task that represent a same execution point of the task.

Regarding redundancy, we assume that the system executes each task r
times, by r independent workers, with the supervisor applying majority vot-
ing to validate results, electing the so-called canonical result [4]. Afterwards,
when the result verification is completed, the system assigns the proper credits
to the workers which have returned correct results.



Validating Desktop Grid Results by Comparing Intermediate Checkpoints 17

3. Comparison of Equivalent Checkpoint Digests

For the comparison of equivalent checkpoint digests, a worker is requested
to return, along with the results of the task that it computed, a selected set of
message digests of the checkpoints saved during the task computation. The
list of checkpoints whose message digests are requested is defined at task cre-
ation time so that redundant instances of a task share the same set of requested
checkpoint digests.

When a majority of redundant executions are completed, and the supervisor
holds enough results for meaningful comparisons, the checkpoint digests from
equivalent execution points are compared to each others. If the digests are
different, the execution point where the differences were detected is marked as
suspicious. Comparatively to the sole result comparisons, the selective digests
technique permits a finer grain detection level, since an erroneous computation
can be located right after the first divergent checkpoint.

3.1 Reducing the Time to Detect an Error

Although the selective digests strategy allows for a more precise location of
error occurrence, it does not speed up the detection of incorrect computations,
since error detection can only occur after, at least, two redundant instances
have terminated.

A more proactive variant is to have workers returning available checkpoint
digests during the computation. Ideally, from a detection point-of-view, the
worker should send to the supervisor a checkpoint digest immediately after its
computation. This way, an error can be spotted by the supervisor as soon as a
majority of checkpoint digests is available for the considered execution point.
Thus, upon detection of a divergent computation, corrective measures can im-
mediately be triggered by the supervisor. For instance, an additional instance
of the task can be scheduled. Additionally, the thought-to-be faulty worker can
be marked as a suspect and further probed to assess its computational honesty,
or, if repeating a faulty behavior it can be blacklisted altogether [14].

3.2 Theoretical Analysis

In this section, we conduct an initial analysis of the advantage of detecting
erroneous computations at intermediate checkpoints. The goal of this analysis
is to estimate the potential advantages of our approach.

We assume that a task is segmented into m fragments. Additionally, we
make the following simplifying assumptions: (1) machines and segments are
homogeneous: a segment always takes t time to complete and the entire task
requires T = m × t. Hence, the number of segments, m, determines the com-
putational effort of the task. The probability of obtaining a wrong checkpoint
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is the same for all the workers and for all checkpoints of the same task; (2) all
the replicas of a task start at the same time across all workers; (3) the errors
are independent of each others, and thus, no contamination of replicas occur,
meaning that comparison of replicas is enough to catch all the errors.

Although these assumptions may seem too restrictive, we show experimen-
tally in Section 5 that our analysis also holds for other more heterogeneous
scenarios. We will focus on two variables that affect the system: the probabil-
ity, pe, of having a computational error in any of the checkpoints (either due
to a computational mishap or malicious behavior) and the number of check-
points of the task. We consider that results are validated through r-replication.
(All the replicas must compute the same equivalent checkpoint digest.) How-
ever, comparison of intermediate checkpoint digests permits partial validation
at point j as soon as the r replicas of a task have sent back their respective
message digests of checkpoint j, that is, MD(Cj). We compare this new and
improved approach against the state-of-the-art method, which can only detect
an error at the end of the execution.

When the computational error occurs before the first validation checkpoint
(C1), the checkpoint comparison method will permit a detection T · m−1

m time
units sooner than the regular methodology. This case occurs when there is
one or more errors in the computation of all the r replicas. It is easy to see
that the probability of this event is 1 − (1 − pe)r, which we denote as p to
simplify. For the next checkpoint, the comparison of equivalent checkpoints
saves T · m−2

m time units, relative to the normal validation method. This occurs
with probability p · (1 − p). Extending this reasoning to checkpoint i yields a
saving of T · m−i

m with probability p · (1 − p)i−1. (In the last segment, when
i = m, or if there is no error for the whole computation, our approach brings no
benefit.) We let W be a random variable to represent the error detection time,
that is, the time elapsed from the occurrence of an error up to its detection. In
other words, if we reschedule the task as soon as the error in the checkpoint
is detected, W represents the maximum time that we can save, relatively to
the compare-at-end approach, with a single error detection. However, in the
regular strategy, the computation time can be even worse than T +W , because
other errors can delay the task even further. Hence, if we are able to calculate
W , we can have a measure of the advantage of detecting errors by comparing
intermediate checkpoints. To calculate the expected value of W , we proceed
as follows (we omit the probability of not having any error, as there is no gain
in that case):

E[W ] =
m∑

i=1

(
pqi−1 · m − i

m
T

)
= Tp

(
m∑

i=1

qi−1 − 1
m

m∑

i=1

i · qi−1

)
(1)
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Where q = 1 − p. Since
∑m

i=1 qi−1 is a sum of terms of a geometric se-
quence, its sum is Sm−1 = 1−qm

1−q . We can use standard techniques to com-

pute the second term of the difference. Consider that S′
m−1 =

∑m
i=1 i · qi−1.

By multiplying S′
m−1 by q and taking the difference (1 − q)S′

m−1, we get

S′
m−1 = Sm−1−mqm

1−q . Since p = 1 − q, this yields:

E[W ] = TpSm−1 −
Tp

m
S′

m−1 = T

(
1 − 1 − qm

mp

)
(2)

In Figures 1(a) and 1(b) we depict the time that we can save relative to T
(E[W ]/T ), considering Equation 2. In Figure 1(a), we set m = 20, while in
the other figure we set p = 0.05. From Eq. 2 we conclude that the maximum
time that a checkpoint comparison can save converges to T , when m → �.
When p → 1, the time that we can save approaches T · m−1

m as we would
expect. For example, we find that with only an error rate of 5% and checkpoint
frequency of 20 times per task, the gain is as high as 35% compared to the
case where error detection is done only at the end of task execution. Note
that this is a conservative estimate of the benefit as many projects (such as
Einstein@home and SIMAP [2–3]) checkpoint more often in a given work
unit. In particular, in the BOINC project climateprediction.net [7], a work
unit requires around 3 months of CPU time in a fast PCs, being checkpointed
72 times during the whole execution. In conclusion, for even conservative
estimates of error rates and checkpoint frequencies, the benefit of comparing
digests of intermediate checkpoints is significant, and is even greater for higher
probabilities of error or for longer computations with checkpoints.
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Figure 1. Benefit (W ) relative to maximum time (T ).
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4. Checkpoint-based Task Replication

Some (BOINC-based) desktop projects increase, at least for specific pe-
riod of times, the redundancy level to foster the chance of fast completion of
tasks. Surprisingly, one of the main motivation for this important decision is
not directly related to the gain of an higher confidence level for the results, but
the need to quickly rewards worker with the proper amount of credits. In fact,
credits are only committed to workers after validation of the sent results. These
credits are determined by the supervisor, based on the credit claims made by
the intervening workers (jointly with the completed results, the worker sends a
claim with the amount of credits it believes it deserves). To circumvent the high
volatility of volunteers, a number of instances higher than what is required for
majority voting is scheduled for execution. This provides timely assignment of
credits even in the presence of sluggish and drop-out workers. However, this
approach wastes resources, and slows down the whole computation.

To speed up completion and validation of individual tasks, promoting fast
credit assignment, we propose to combine the comparison of intermediate
checkpoint digests with task replication. To prevent lengthy re-computations
due to the replication of task, we resort to validated checkpoints to load execu-
tion state in tasks to replicate, avoiding to restart from scratch.

The task replication works by loosely coupling the execution of the redun-
dant instances of a same task, which are configured for reporting selective
checkpoint digests. Note that workers processing instances are not aware of
each other (otherwise the risk of collusion would increase). The supervisor
follows the progress of the coupled instances of a task through the messages
holding the checkpoint digests sent back by these instances, validating the re-
ceived checkpoint digests of the selected execution point through comparison
as soon as a majority of results has been received.

Whenever a worker lags behind its instance partners by more than a speci-
fied threshold – the threshold takes into account the relative speed of the work-
ers – the supervisor initiates a replace operation, with the goal of substituting
the behind-schedule worker. To further speed up substitution, the substitute
task should start from the last validated checkpoint, if available. To prepare
for the instance substitution, the supervisor requests, upon the next communi-
cation of a paired-worker, the last validated checkpoint from this worker (not
the digest, the entire checkpoint file). Upon receiving it, it checks its validity
through message digest comparison, and creates a task which integrates the
validated checkpoint file. This replace task is then scheduled to a request-
ing worker, which starts the computation from the checkpoint execution point,
thus skipping the computation up to this point. From the point of view of the
supervisor, the newly scheduled task replaces the lost/delayed one, and thus
the monitoring of execution proceeds as previously explained. Note that, in
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order to prevent excessive replicas, replication should only be performed if the
number of instances is below a predefined threshold.

5. Experimental Results

In this section, we confirm and extend the theoretical results obtained in Sec-
tion 3.2 through simulation. Specifically, we assign a number of tasks to a set of
workers, setting the duration of these simulated tasks beforehand. Whenever
a worker computes a checkpoint, it randomly determines whether that com-
putation is wrong or correct (once a checkpoint is wrong, all the remaining
checkpoints from that worker are also considered as wrong.) The total time of
the computation, T , is the time at which the last replica finishes its last check-
point, regardless of whether it is correct or wrong. Assume that checkpoint Cj

was the first one to be wrong and that the last replica finished Cj at time TW .
We are interested in the random variable W = T − TW , which represents the
benefit of using intermediate checkpoints relative to the state-of-the-art. In par-
ticular, the metric we use to quantify the gain compared to the state-of-the-art
is the relative value W/T .

We started by considering the same parameter settings that were used to
generate Figure 1(b). So, we set an uniform pe ≈ 0.0253 for all execution seg-
ments, considering homogeneous segments, and a two-replica scheme, which
corresponds to p = 0.05. As expected, we got a curve that closely follows the
theoretical prediction. Then, we studied the impact of considering different
durations for the checkpoints and different error probabilities for each of the
computed checkpoints. We used two different random distributions for this:
uniform and truncated Gaussian. To maintain consistency, the average values
for the error probability and for the segment duration were the same as for the
fixed case, pe and T , respectively. In the uniform distribution, the actual er-
ror probability was chosen uniformly from the interval [0.5pe, 1.5pe) (which
is always inside the interval [0, 1]), while the duration was chosen using the
same distribution in the interval [0.5T, 1.5T ). For the Gaussian distribution,
we considered averages of pe and T , and standard deviations of 30% of the
average. Additionally, we truncated the values of pe and T to be inside the
ranges [0.5pe, 1.5pe] and [0.5T, 1.5T ], respectively. In Figure 2, we show the
average result of varying the number of checkpoints for 300 different trials. As
we can see, the curves overlap.

The most interesting conclusion from these results is that the particular ran-
dom distribution that controls the duration and the errors of the checkpoints
does not seem to make any significant difference, at least for the same averages.
This would not be true if, for instance, the average duration of checkpoints
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Figure 2. Benefit (W ) relative to expected maximum time (T ) (obtained experimentally).

i and j was different for checkpoints i and j2. We believe that there is a sim-
ple and intuitive reason for this; on average the slowest replica should finish
checkpoint i around time i · T

m , where T is the time at which the slowest replica
finishes the task. Although some particular cases may not follow this trend, our
experimental results confirm this intuition for the average case.

6. Related Work

Antonelli et al. [5] propose a distributed checkpoint-based technique for
sabotage tolerance addressing sequential computation split in multiple con-
secutive temporal segments. To certify a given checkpoint Cj , the supervisor
creates a verification task that references the checkpoint to verify and holds the
network contact details of the worker which performed the computation. The
task is then assigned to a worker node (verifier), which requests the checkpoint
from the worker being scrutinized, and loads it upon reception, executing the
task up to the next checkpoint, that is, Cj+1. It then sends the message di-
gest of the this checkpoint to the supervisor. Finally, the supervisor compares
the digest to the other equivalent digests. The scheme is appealing since it
distributes the computation needed for verification of checkpoints through the
workers. However, some major issues like asymmetrical communications and
node availability are not addressed by the authors. Furthermore, workers need
to keep some of the checkpoints of the computed tasks and transfer them when
requested, a demand that might require meaningful space storage and network
bandwidth, especially with large individual checkpoints. On top of that, pro-
moting direct contact between workers may ease collusion.

2However, note that it would not make much sense to consider different average durations for different
checkpoints, unless we were targeting a particular application with a well-known behavior.
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Agbaria and Friedman [1] propose a replication and checkpoint-based
scheme to detect intrusions through anomaly spotting. They resort to check-
point comparison for the purpose of identifying intrusions in a Byzantine en-
vironment. Similarly to our approach, the execution is split in n sequential
phases, with a checkpoint being taken by each worker node at the end of each
phase. For supporting a maximum of t intruded nodes (each node executes a
replica), the proposed scheme requires t + 1 replicas when no intruded node
exists. However, when intrusion exists, the protocol needs additional stages,
involving more than the 3t + 1 replicas which would be required by a straight
Byzantine agreement protocol. The unbalance is supported by the fact that in-
trusions are rare and thus it compensates to have a lightweight scheme which
is only penalized when intrusions do occur. The protocol distinguishes be-
tween workers (nodes that perform the computation and which can get in-
truded) and auditors, which are responsible for assessing the integrity of the
workers. Specifically, the auditors are used to agree that all the t + 1 replicas
match. A major requirement of the protocol lies in the required synchroniza-
tion, with workers having to send their checkpoints to the auditors within a
given time frame. This requires that the replica execution occurs simultane-
ously, a premise that might hard to fulfill in a volatile environment such as
desktop grids. Furthermore, the checkpoints (or equivalently, a message di-
gest) need to be sent to the auditors at the end of every stage, an operation
that requires communication resources and might be difficult if auditors are
not directly addressable [16]. Relatively to the solution that we propose, our
emphasis is more on the practicality of the error detections schemes and its
integration with current desktop grid frameworks.

7. Conclusion

We proposed a strategy for early detection of errors by comparing check-
points of redundant tasks executed over desktop grid resources. We developed
a theoretical model that estimates the benefit of using intermediate checkpoints
given a task length and task segment error rate. We confirmed this theoretical
analysis with simulation results. We find that with only an error rate of 5% and
checkpoint frequency of 20 times per task, the gain is as high as 35% compared
to the case where error detection is done only at the end of task execution. For
higher checkpoint frequencies or high error rates, the benefits are even greater.

For future work, we plan to extend the study the case where segments are
completed with non-uniform execution times. In addition, we will study and
characterize work unit error rates in a real BOINC project, namely Xtrem-
Lab [18], and then instantiate our model with such error rates. Finally, we
intend to study the use of trickle messages [7] to regularly send the checkpoint
digests to the central supervisor, without incurring any additional communica-
tion costs.
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1. Introduction

The eNANOS is an execution framework developed in the Barcelona Super-
computing Center. One of its main objectives is to provide a framework to ex-
ecute multilevel parallel applications with low-level support. Furthermore the
eNANOS architecture is based on the idea of coordination between the differ-
ent layers [9]. Currently the eNANOS Execution platforms uses the eNANOS
Grid Resource Broker [8] which manages the jobs from the Grid layers in co-
ordination with the local resource environments.

The eNANOS System is also able to provide information about the execu-
tion behavior of applications in run time, such as its progress or the obtained
performance in a given moment. This information can be used by a Grid Re-
source Broker or metascheduler to improve its scheduling and resource strate-
gies and the execution platform can improve the execution time of applications
and resource usage as well.

The main effort of the PSNC in the Grid resource management is the GRMS
resource broker [2]. GRMS is an open source meta-scheduling system for large
scale distributed computing infrastructures. Based on the dynamic resource se-
lection, mapping and advanced grid scheduling methodologies, it has been tai-
lored to deal with resource management challenges in Grid environments, e.g.
load-balancing among clusters, setting up execution environments before and
after job execution, remote job submission and control, files staging, workflow
management and more.

In this paper we discus the steps that we have to follow to integrate the
eNANOS execution environment into the GRMS infrastructure. In particular
we are interested in the mechanisms to allow the integration of the different
components and how to use the information provided by eNANOS to improve
the scheduling strategies in the GRMS system.

In section 2 we present the eNANOS approach and its main characteristics
and in section 3 we introduce the GRMS system. In section 4 we study the
possibilities of integration between the eNANOS and GRMS systems, and,
finally, in section 5 we present the conclusions and future lines of work.

2. eNANOS Execution Environment

The eNANOS project aims at developing an execution platform for paral-
lel applications on Grids. The objective of this platform is to provide support
to implement and evaluate resource management and scheduling policies on
a computational Grid. The eNANOS project is based on the idea of having a
good low level support for performing a good high level scheduling taking into
account these ideas: a fine grain control between scheduling levels, dynamic al-
location (MPI+OpenMP jobs) to improve system performance, detailed infor-
mation about current scheduling and performance to improve future scheduling
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decisions, and, based on this accurate information, efficient scheduling (in
terms of slowdown) based on performance prediction.

The scheduling strategies are based in the coordination between the different
layers involved in the execution of a job: Grid scheduling, cluster scheduling
and processor scheduling. The scheduling decisions are known by the other
elements in the system and are taken based on direct information, not based
neither on estimations nor just observations.

The idea is providing well defined API between levels to both forcing the
scheduling decisions (for instance specific allocations) and getting detailed in-
formation (for instance the real performance reached by a job in run time). A
general overview of the system architecture is shown in Figure 1.

Figure 1. eNANOS Overall Architecture.

The Grid jobs are managed by the eNANOS Resource Broker and submitted
to the local HPC resources through the Globus infrastructure. The eNANOS
Resource Broker is developed on top of Globus Toolkit 3 as a Grid service and
it is compatible with both GT2 and GT3 services. It implements the resource
discovery, selection and monitoring, the job submission, and the job monitor-
ing. Moreover, the eNANOS Broker provides a set of Grid Service interfaces
and a Java API that can be used from command-line clients, applications or
portals. The eNANOS broker has been extended to provide more functionality
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and supporting JSDL 1.0 with a gateway implemented as a GT3 Grid service
as well. More detailed information about this broker can be found in [8].

For the cluster management eNANOS uses LoadLeveler as a queuing sys-
tem and the eNANOS Scheduler as an external scheduler to manage the local
jobs. It implements scheduling policies based on FCFS and backfilling (in
progress) guided by the information regarding the behavior of applications and
performance obtained in runtime from the processor scheduler. So, the sched-
uler centralizes the information from the runtime about the allowed multipro-
gramming level of multiple computational nodes and also some information
regarding the applications and hardware (e.g. load of nodes or CPUs used by
each job). It also communicates with the eNANOS Broker in order to provide
information to the upper level.

The CPU scheduling is performed by the NANOS-RM. Its main goal is to
efficiently distribute a set of processors between a set of applications that are
under its control. It implements scheduling policies based on dynamic alloca-
tion in a two-phase fashion (multilevel). The first phase is between applications
and implements a FIFO policy, and the second phase is between processes of
a MPI+OpenMP application and implements Equipartition [7] and Dynamic
Processor Balancing [3]. The idea is sharing the required information for im-
proving the whole system performance without penalizing the applications per-
formance independently.

The NANOS Job Monitor provides the monitoring information about the
execution of workloads in XML that can be translated to trace files format to
visualize and analyze them [1].

The information system (Palantir) can be seen as a meta-information system
that can collect a very large kind of different information, providing a uniform
access to it. The Predictor service provides predictions about the job perfor-
mance that can be used by both the eNANOS Scheduler and the eNANOS
Broker. It implements two kinds of prediction techniques: those that are based
on statistical approaches that use estimators; and those that are based on data
mining algorithms. Both information and predictor systems are not integrated
yet but their services are available.

3. Grid Resource Management System (GRMS)

GRMS is an open source meta-scheduling system for large scale distributed
computing infrastructures. Based on the dynamic resource selection, mapping
and advanced grid scheduling methodologies, it has been tailored to deal with
resource management challenges in Grid environments, e.g. load-balancing
among clusters, setting up execution environments before and after job execu-
tion, remote job submission and control, files staging, and more. For our tests
we have used version 2.x of GRMS, which is based on the GT4 and makes
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use of low-level Globus Services deployed on resources located in various
academic institutions in Europe and USA. GRMS connects to the core ser-
vices through a set of Java and C APIs. In particular, GRMS uses GRAM,
GridFTP and GRIS/GIIS services. As a persistent service, GRMS provides a
set of well-defined GSI-enabled Web Service interfaces for various clients, e.g.
applications, command-line clients or portals. Moreover, GRMS is able to take
advantage of middleware services, e.g. the GridLab Authorization Service or
Replica Management Services as well as to interoperate with the infrastructure
monitoring tools such as the Mercury Monitoring System. Therefore GRMS
is in fact one of the main components of a grid middleware layer that can be
organized in many different ways depending on particular infrastructure and
applications.

The architecture of GRMS together with a set of its internal modules, namely
Job Queue, Job Registry, Job Manager, Resource Discovery and a central unit
called Broker Module is presented in Figure 2. The aim of the Broker Module
is to control the whole process of resource and job management. The broker
was designed in such a way that it allows us to implement various scheduling
and policy plug-ins. One of plug-ins, called Reschedule plug-in, is responsi-
ble for jobs migration and rescheduling within GRMS. Worth mentioning is
also the Resource Discovery Module, that monitors a status of distributed re-
sources. It uses a flexible hierarchical access to both central (GIIS) and local
information services (GRIS).

GRMS uses the multicriteria decision support methods for scheduling.
Based on user preferences it evaluates and selects convenient resources. The
multicriteria techniques used in Grid resource management were described in
details in [4]. Examples of use of this model for specific Grid resource man-
agement problems were presented in [5] [6].

4. Integration Issues

To start with the integration of the eNANOS execution environment with
the GRMS system we need to identify the common features and what are the
functionalities provided by eNANOS that can be useful for the GRMS.

Currently, in the complete infrastructure of the eNANOS Execution Frame-
work the Grid resource management is performed by the eNANOS Resource
Broker. The idea was to implement a customized environment to execute ef-
ficiently multilevel parallel applications, but one of the desirable features for
one of this kind of systems is to provide generic interfaces. Therefore, the lo-
cal execution system should be able to be integrated to other Grid Resource
Brokers or metaschedulers such as GRMS.

Since the eNANOS system supports both traditional jobs and multilevel par-
allel jobs, the resources supporting eNANOS can be seen as a normal resource
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Figure 2. General GRMS architecture.

or as a specific case for those jobs that require support from the local envi-
ronment. The idea of integrating this execution environment into a Grid is to
improve the behavior of the Grid in general, taking advantage of the comple-
mentary functionalities provided by eNANOS. The improvement is though in
terms of improving the execution time of applications and the resource usage.

On the other hand, one of the important capabilities of the eNANOS System
is the coordination between the different layers involved in a job execution and,
in particular, the detailed information that is able to provide to the Grid level
regarding the behavior of the applications in run time. The eNANOS offers
some libraries and tools to obtain detailed information in run time about the
progress of the applications and the performance as well.

As a Grid Resource Broker, GRMS performs the job scheduling and the
resource management following some particular strategies. Hence, the GRMS
system can consider the information offered by eNANOS regarding progress,
performance and fine-grain monitoring to improve the scheduling strategies
implemented into the scheduling engine of the GRMS.

Therefore, we have identified two different possible integration issues: us-
ing eNANOS as a new execution platform, and using eNANOS as a new infor-
mation provider.
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4.1 eNANOS as a new execution framework

Even though GRMS has been designed as an independent set of components
for resource management processes, the core services used by GRMS are in-
cluded into the Globus Infrastructure. As the eNANOS system is based on
Globus, the integration of both components should be possible without chang-
ing the interface to the local resources.

In the eNANOS Execution Framework Globus is used as a middleware and
a customized LoadLeveler jobmanager in local resources. Since the GRMS
expects to find a Globus-based resource with a particular jobmanager for the
queuing or fork system, the resources with eNANOS system installed should
be presented as a new resource for the scheduling process. But we have to take
into account certain particularities of the eNANOS-enabled systems, perform-
ing a special treatment for this kind of resources.

Since the main approach of the eNANOS system is the low level support
for multilevel applications, the GRMS system can perform a special use of the
eNANOS resources. In particular the most important consideration regarding
this issue is the specification of parallel jobs.

The eNANOS system supports JSDL 1.0 for the specification of jobs. More-
over, in the eNANOS context is being implemented an extension of the JSDL
1.0 for multilevel parallel jobs [10]. In Figure 3 it is shown the XML schema
of this extension for the JSDL.

Figure 3. JSDL 1.0 extension for parallel jobs schema.
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The most important attributes for the local execution environment are:

Application type. It is an enumeration type specifying the kind of appli-
cation regarding its programming model (MPI, OpenMP, etc.)

Number of MPI processes. It is just a positive integer value

Number of OpenMP threads. It is just a positive integer value

Malleability. It is a boolean that indicates if the application is malleable
or not

Topology. It is an enumeration type specifying the topology of the appli-
cation. This value can be taken into account by the LRMS to decide the
number of processes or threads that will be spawned for the application
(specific, power of 2, etc.)

GRMS uses its own job description language (GJD). It is a XML-based lan-
guage, which allows specifying a description of the job executable and also
the job resource requirements. There are available several parameters in the
GRMS Job Description, including the location of files, arguments, file argu-
ments, executable, environment variables, standard input/output/error, check-
pointing definition, name of hosts for the job execution, operating system, re-
quired LRMS, network parameters, system paths, minimum memory required
and so on. Regarding the specification of the parallelism details of the ap-
plications, the GJD allows specifying the type of the application with the
<executable> tag and the number of required processors with the
<cpucount> tag. It only allows the threads and MPI programming models
for parallel applications. The <executable> tag contains ’count’ and ’type’
attributes that denotes the number of executions of the executable and the way
the job-manager submits a job respectively. For the ’type’ attribute the fol-
lowing values are available: single (only 1 process or thread will be started),
multiple (start count processes or threads), mpi (use the appropriate method to
start the job compiled with a vendor-provided MPI library, the job is started
with count nodes).

The description of a Grid job with the GJD is shown bellow. It is a MPI job
with 4 processes, and it gets the configuration for submitting a NAS-BT from
an input file.



Integration of the eNANOS Execution Framework with GRMS 33

1 < grmsjob a p p i d =" app id ">
2 < s i m p l e j o b >
3 < e x e c u t a b l e t y p e =" mpi " c o u n t =" 4 ">
4 < f i l e name=" exec− f i l e " t y p e =" i n ">
5 < u r l > f i l e : / / / / home / bench / nas−mz / exec−b t < / u r l >
6 < / f i l e >
7 < a rgumen t s >
8 < v a l u e > f i l e . l o g < / v a l u e >
9 < f i l e name=" f i l e . c o n f " t y p e =" i n ">

10 < u r l > g s i f t p : / / pcmas . ac . upc . edu / ~ / ex / f i l e . con f < / u r l >
11 < / f i l e >
12 < / a rgumen t s >
13 < / e x e c u t a b l e >
14 < / s i m p l e j o b >
15 < / grmsjob >

There are some attributes required by eNANOS not supported by the GRMS
job description language. Thus, it is required to extend the specification of
details about parallelism for applications in GRMS.

There are basically two different ways:

Extending the GJD language

Using a mechanism to specify more details with the current semantic

We have decided not extending the language used to describe jobs in the
GRMS system. We have used some simple mechanism such as environment
variables. We have chosen existing variable names from OpenMP for a good
understanding and some other for other semantics. The complete list of con-
sidered environment variables is the following:

OMP NUM THREADS. Indicates the number of OpenMP threads

OMP SCHEDULE. Indicates the scheduling policy to follow by the
OpenMP runtime

PAR MALLEABLE. Indicates if the parallel application is malleable or
not

PAR TOPOLOGY. Indicates the kind of topology followed by the ap-
plication

These environment variables can be included externally to the GRMS sys-
tem just by the job description file.

Another important issue to take into account regarding the definition of jobs
is the identification of the jobs. Since this is a coordinated infrastructure and
there are several layers involved in the architecture, the mapping of IDs into
the different layers and the desciption of jobs is crucial.



34 Achievements in European Research on Grid Systems

Figure 4. Data flow between the main components of eNANOS.

Figure 4 shows the call procedure between the main eNANOS execution
framework entities.

In our current execution environment, the eNANOS Grid Resource Broker
receives a JSDL document from the Web Portal or from a client interface.
Afterwards, the JSDL document is converted to RSL because the Grid broker
is built on top of the Globus infrastructure.

Not all the information expressed in a JSDL document can be covered in an
RSL document, then we use some environment variables as a simple mecha-
nism to solve this problem. Finally, in the local resource the appropriate job
manager transforms the RSL document to a LoadLeveler script.

An example of an obtained LoadLeveler script is shown below.
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1 #! / b i n / sh
2 # Job command f i l e c r e a t e d by GRAM/ JobManager / l o a d l e v e l e r . pm
3 # @ j o b _ t y p e = p a r a l l e l
4 # @ i n i t i a l d i r = / s c r a t c h / i r o d e r o / cpmd
5 # @ i n p u t = / dev / n u l l
6 # @ o u t p u t = cpmd . 4 . pwr4 . o u t
7 # @ e r r o r = cpmd . 4 . pwr4 . e r r
8 # @ c l a s s = s h o r t
9 # @ r e s t a r t = yes

10 # @ t o t a l _ t a s k s = 2
11 # @ node = 1
12 # @ e n v i r o n m e n t = COPY_ALL ; \
13 # MP_EUILIB= i p ; \
14 # MP_EUIDEVICE=en0 ; \
15 # PP_LIBRARY_PATH=/ s c r a t c h _ t m p / i r o d e r o /CPMD−3 . 9 . 1 / PP_LIB ; \
16 # OMP_NUM_THREADS= 1 6 ; \
17 # PAR_TOPOLOGY=power2
18 #@ queue
19 #
20 / s c r a t c h / i r o d e r o /CPMD−3 . 9 . 1 / cpmd . x

/ s c r a t c h / i r o d e r o /CPMD−3 . 9 . 1 / i n p u t s / s m a l l . i n p
21 #
22 # End of j o b command f i l e .

Since from both the Grid and the local environment it is required to know
the mapping of a given job into the other layers (for example to ask for infor-
mation to a local system), we need to include into the GRMS system another
environment variable, but in this case it has to be assigned inside the GRMS
system not by the user (because the Job ID is unknown before its submission).

GRID ID ENV. Identification of the Grid job (given by the GRMS sys-
tem).

4.2 eNANOS as a new information provider

In order to provide more details of job execution in the local environment
(where eNANOS gives support for parallel applications) we have found two
possible ways of integration as is shown in Figure 5:

Provide an API for eNANOS functionalities that can be used directly
from the GRMS system

Using an Information system (such as Mercury) and adding a new plugin
to eNANOS collect the information provided by eNANOS (information
queried with general mechanisms)

The second solution should be better in terms of extensibility and generic,
but for the first steps of integration is more complicated since there is no plugin
implemented yet for eNANOS and the GRMS system has to be modified to
support the new data in the scheduling engine.
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Figure 5. Integration possibilities: by API (left) and by an IS (right).

Therefore, in this first step we have implemented an API for the eNANOS
Execution Framework that allows the GRMS system to obtain information re-
lated to the application behavior in run time. As it is discussed in the previous
section, the identification of jobs is very important to map the Grid jobs into the
local execution platform when getting data. The API has been implemented in
Java and consists of the following basic functionalities:

geteNANOSProgressInfo (JOB ID, REL/ABS)

geteNANOSPerformanceInfo (JOB ID, REL/ABS)

geteNANOSLocalInfo (JOB ID)

The schema of the information returned by the API methods includes several
data from the local execution systems. Actually, when a job is in the RUNNING
state, the XML includes a set of applications with their respective processes and
threads. For each of these processes and threads there is also included informa-
tion about performance metrics (such as MIPS or MFLOPS). This information
is very important to know the behavior of the job since our project is targeted
to parallel HPC applications, MPI and MPI+OpenMP as well.

This fine-grain information is provided by the NANOS Resource Manager
(NANOS-RM) through its PS interface [11]. The NANOS-RM is the responsi-
ble of the CPU scheduling in the local system, so it is able to know the details
of both the parallel applications and the CPU resources in real time. It pro-
vides for each application the number of processes (e.g. the number of MPI
processes), the number of threads per process (e.g. the number of OpenMP
threads), the status of these threads and the CPU where the threads are allo-
cated in case of running threads.
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The eNANOS execution environment also provides information about the
progress and performance of the applications in run time. This information
can be queried as an absolute value (for example 1500 MFLOPS) or as a rela-
tive one (value from 0 to 100 percent). Currently there are two different ways
to generate this information: using a library to instrument the application or
just using the library for performance developed on top of the progress indi-
cators infrastructure. In the local system, the progress information is managed
by a dedicated daemon which provides an API to access to the indicators infor-
mation. Furthermore, the NANOS Scheduler also queries to the daemon API
to collect this kind of information.

The XML schema of the data provided by the daemon through the client
interfaces is shown in Figure 6.

Figure 6. XML schema of the progress indicators data.

GRMS can use various scheduling strategies depending on its configuration
and available environment. In most cases it uses multicriteria models for Grid
scheduling (e.g.[4] [6]). Some of these models allow modifications of sched-
ules in runtime based on dynamic information gathered from an environment.
These methods can particularly take advantage of functionality provided by
eNANOS since it allows getting information about performance of applica-
tions in runtime.

In particular, in [5] the dynamic rescheduling procedures implemented in
GRMS are presented. They use checkpointing and migration mechanisms sup-
ported by GRMS. The scheduling model is also based on multicriteria meth-
ods. The complete description of the algorithm is available in the quoted paper.
In a nutshell, GRMS reschedules automatically ’smaller’ jobs if a ’large’ job
waiting in a GRMS queue cannot be executed due to lack of sufficient amount
of resources (e.g. CPUs). By ’small’ and ’large’ jobs we mean here jobs that re-
quire small and large amount of resources respectively. A decision concerning
which job should be migrated to which host is done based on multiple criteria.

We used in our experiment the following criteria for the evaluation of desti-
nation hosts: available memory, mean load during the last 1, 5 and 15 minutes,
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CPU count, CPU speed. The following set of criteria was applied to evaluate
checkpointing and migration costs: the number of hosts a job can migrate to (to
minimize the risk of a failure), the size of a migrating job (memory allocated
by this job), the job’s current runtime (in order to migrate jobs that are not to
finish soon).

Of course, the current runtime is not the best criterion for evaluation of
migration costs of a given job. A job progress is much better metric for this.
Taking advantage of this eNANOS functionality GRMS can better evaluate
candidate jobs for migration and in this way improve efficiency of the whole
schedule (for instance mean job completion time).

Another possibility of exploitation of eNANOS functionality for efficient
dynamic rescheduling is use of information about job performance. If this
performance is below a certain level (and progress is not advanced too much)
then a better resource is found and a job is migrated to that resource (of course
if checkpointing of this job is possible).

Ideally the information about a level of performance (or even better relative
performance) below which a job should be rescheduled could be provided by
end-users. They would have to specify it in a certain kind of agreement. Since
currently such information cannot be passed in a GRMS job description we
will consider these issues in the future.

5. Conclusions and Future Work

In this paper we have presented the eNANOS Execution Framework as a
target infrastructure to be integrated with Grid services such as a Resource
Broker or metascheduler as in the case of GRMS. We have studied how to in-
tegrate these two components and which of the required changes are realistic.
We also have studied how to describe accurately the parallel jobs in the Grid
layer and how it influences the whole architecture (specially the lower layers).
We have solved this problem with a very simple solution based on the use
of environment variables. We have implemented an API to allow the GRMS
system to obtain specific information from eNANOS. This API has been im-
plemented in Java and provides the functionality to get information about the
progress, performance and accurate description of them in a run time. Finally,
we have discussed the possibilities for improving the scheduling strategies of
the GRMS system using the functionality provided by the eNANOS system.

As future work we should include the implementation of new plugin for
the Mercury information system to allow GRMS to get the information pro-
vided by eNANOS with more generic mechanisms. However, some changes
in GRMS are needed. We also expect to implement new scheduling strategies
and policies into the GRMS system and, finally, evaluate some real workloads
on a testbed composed by resources of both PSNC and BSC institutions.
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Abstract Grid applications are increasingly being developed as workflows using well-
structured, reusable components. We argue that components with well-defined
semantics facilitate an efficient scheduling on the Grid. We have previously de-
veloped a user-transparent scheduling approach for Higher-Order Components
(HOCs) – parallel implementations of typical programming patterns, accessible
and customizable via Web services. Our approach combines three scheduling
techniques: using cost functions for reducing communication overhead,
reusability of schedules for similar workflows, and the aggregated submission
of jobs. We analyze the user-transparent scheduling from four perspectives,
namely: the easiness of integration within already existing Grid scheduling sys-
tems, the gains for individual users, the resource provider advantages, and the
robustness with respect to execution failures. We perform our evaluation using
the KOALA Grid scheduler extended to support our user-transparent scheduling,
which we run on the DAS-2 system combining over 200 nodes at five sites in the
Netherlands. The experimental results show an increase in throughput by more
than 100%, a descreasing of the response time by 50%, and a failure reduction
by 45% for the considered scenarios.

Keywords: User-Transparent Scheduling, Co-Allocation, Component Technology, Higher-
Order Components
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1. Introduction

Grid technology provides a means for harnessing the computational and
storage power of widely distributed collections of computers. Scheduling in
a Grid environment is a complicated task and usually requires specific knowl-
edge about the application being scheduled [3], in particular, the volume and
the frequency of communication. Since the communication behavior of an ar-
bitrary application cannot be foreseen during the setup of an application, it is
typically the task of the application developer or the end user to provide infor-
mation about the application’s communication properties [5].

Grid applications are difficult to be developed from scratch: because of
their complexity and scale, they increasingly rely on pre-packaged pieces of
software which are called components, modules, templates, etc. in different
approaches. In this paper we use Higher-Order Components (HOCs [16]) -
reusable components that are customizable for particular applications using
parameters which may be either data or code. HOCs include the required con-
figuration to run on top of a standard Grid middleware [17] and can be remotely
accessed via Web Services. Thereby, HOCs abstract over the technical features
of Grid platforms and allow their users to concentrate on their applications.
While providing more structure and reuse in the application development pro-
cess, program components imply a change of focus for scheduling: it becomes
mandatory to explore new solutions for mapping both single components and
their compositions to available Grid resources.

We aim at user-transparent scheduling, i.e. techniques that free the end user
from specifying application’s communication behavior. Our approach to user-
transparent scheduling makes use of: software components for building ap-
plications, scheduling cost-functions for lowering the communication costs, a
reusable workflow technique for avoiding the need for a repeated scheduling
when a workflow recurs, and an aggregated submission technique for avoid-
ing multiple submissions of job to a single execution site. In this paper we
present and analyze these techniques and their combined use for component-
based Grid applications.

We use the KOALA system [21] as the basic scheduler for testing our user-
transparent approach. KOALA supports co-allocation – the scheduling of par-
allel application on Grid resources. We enhance KOALA to schedule
component-based applications using their specific communication properties.

The structure of this paper is as follows. First, we describe Higher-Order
Components and the user-transparent scheduling approach; second, we intro-
duce our integration and evaluation methodology; and third, we prove its ad-
vantages in the context of KOALA Grid scheduler and DAS-2, the Dutch Grid
system, deployed at five sites in the Netherlands.
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2. Context and Background

In this section, we describe the general context in which our approach to the
user-transparent scheduling of component-based applications on Grids is de-
veloped. We first introduce the targeted environment of this work, and the con-
cept of HOC – Higher-Order Component – for Grid application programming.

2.1 Environment Description

The main elements of the Grid environment considered in this work are
as follows: (Figure 1 contains a high-level overview showing some of these
elements):

Worker Node: a resource for computing and storing data;
Execution Site: a collection of nodes placed in a single administrative
domain;
Work unit (or job): a sequential code executed on a single node;
Application: computation composed of work units;
Resource Manager (RM): a specific software that allocates resources and
monitors applications submitted by the users at a site level;
Security Gate: a software that authenticates and authorizes user requests
and invokes the RM whenever an application is submitted;
Client: a computer used for submitting HOC-based applications to the
Grid built out of several sites;
HOC Service Node: a resource providing a Web service for accessing a
HOC implementation;
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Figure 1. Grid Environment: High-Level Overview.
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Grid Resource Dispatcher: software that maps HOC applications onto a
Grid, i. e. , it aggregates resources (nodes and sites) and reserves them
for work unit execution.

In this environment, the HOC client submits a request for a specific HOC-
based application by means of the HOC Web service. The HOC Web ser-
vice generates a scheduling description of the application and passes it to the
scheduler for running the application on the execution environment. Once the
resource dispatcher aggregated the required amount of resources for the appli-
cation, it returns a handle to the HOC Web service and steps aside from further
interaction. Further, it is the task of the HOC Web service to actually submit
the application to the Grid and to monitor its progress. In this manner, any
HOC-based application can be scheduled over a Grid environment without the
need of direct user interaction.

2.2 Higher-Order Components

HOCs are high-level programming constructs, pre-packaged with (parallel)
implementations and the required middleware configuration files. Each HOC
implements a generic pattern of parallel behavior with a specific communi-
cation structure. A HOC can be customized for a particular application by
providing it with arguments which may be either data or application-specific
code. HOCs were given their name (Higher-Order Components) because of
their code parameters, in analogy with higher-order functions which accept
functions as arguments. HOCs are made accessible to the Grid user via spe-
cialized Web services. Every HOC is by default configured to run on top of a
specific middleware (Globus).
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Figure 2. Examples of Communication Structures in HOCs.
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Currently three different HOCs are available: Farm-HOC [16], Pipeline-
HOC [13] and Wavefront-HOC [14] (see Fig. 2). The Farm-HOC is used for
running "embarrassingly parallel" applications without dependencies between
tasks. All farm implementations have in common the existence of a Master
process that partitions data; the parts are then processed in parallel using multi-
ple Worker processes. In contrast, in the Pipeline-HOC, all inputs pass through
each pipeline stage in the same order, while the parallelism is achieved by over-
lapping the processing of several input instances. The third component studied
in the paper, the Wavefront-HOC, implies a set of computations advancing as
a hyperplane in a multidimensional variable space.

2.3 User-Transparent Scheduling for HOCs

Applications using HOCs have well-defined requirements in terms of data
distribution and communication schemata, i. e. , which data is sent, when, and
to how many processors, is completely determined by the HOC type and does
not depend on the particular application where that HOC is used. Many differ-
ent applications can be built using the same HOCs or combinations of them,
but our user-transparent scheduling of HOC-based applications works inde-
pendently of application-specific code and data parameters.

The following techniques are combined together in our implementation:

Cost functions take in account the different characteristics of the environ-
ment in which a HOC application is executed. Various costs functions
are employed for achieving an adequate distribution of resources to the
work units (the "where?" part of scheduling). In [8], we have identified
bandwidth-aware cost function, which provides the highest communica-
tion time reduction for the most HOCs;

Reusability of schedules for similar workflows avoids successive job sub-
missions with similar communication patterns. Job submission opera-
tions are expensive in Grids [10]. In our approach, different applications
using the same HOCs will be mapped onto the same resources;

Aggregated submission of work units exploits the fact that in many cases
work units receive similar parameters for execution (similarly to an MPI
application). Our scheduling system will place multiple job execution
requests to avoid the necessity for individual HOC work unit
submissions.

While user-transparent scheduling of single HOCs is already a complex op-
eration, compositions of HOCs also occur in practice and must be scheduled
on the Grid. This can be the case, when scientific applications are divided into
several subproblems of different sizes and complexities. We schedule appli-
cations that make use of multiple HOCs composed together by applying our
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submission technique recursively to each single HOC in the composition, pro-
cessing the global HOC first, and then down to inner ones.

3. Implementation of the Scheduler

We describe in this section our approach for implementing user-transparent
scheduling in general and the metrics used to evaluate the performance of our
implementation in different scenarios.

3.1 Integration of Existing Systems

We have chosen a layered solution for supporting HOC scheduling, because
it provides the advantage of easily incorporating already existing scheduling
solutions, and because of its flexibility in addressing various classes of parallel
applications. We were interested in a minimal integration effort while taking
advantage of already existing infrastructures. Based on existing Grid sched-
ulers (KOALA [21], Pegasus [6], GridBus [4]) or brokers (GRUBER [9]), we
have chosen a three-layers scheduling architecture [7] represented in Figure 3,
and consisting of:

1 Translation layer for mapping the user’s selection of a component to
an associated communication pattern and for using a description of this
model in order to select and provide as input to the cost management.
This layer is also responsible for identifying whenever the reusable tech-
nique could be invoked and reusable submissions can be performed;

2 Mapping and observation layer for tracking allocated resource status
and work units’ progress and for taking action whenever a failure occurs
and additional resources are needed. Any already existing Grid schedul-
ing infrastructure is incorporated by this layer in our approach;

3 Resource management layer for acquiring and aggregating adequate re-
sources to fulfill user objectives (reservation). This layer implements the
aggregated submission of work units as described before and it is usu-
ally represented by different supporting tools of a Grid scheduler (i.e,
runners for KOALA or site-selectors for GRUBER).

3.2 Performance Evaluation of Scheduling

We make two assumptions about the Grid on which our scheduling archi-
tecture operates. First, providers are interested in better utilizations of their
resources (i.e., throughput); second, consumers want to achieve better per-
formance for their applications and to acquire as many resources as possible
when their applications require a lot of computational power (e.g., short re-
sponse times). We employ two metrics for quantifying the performance of our
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user-transparent scheduling approach from both a user and a provider point of
interest:

Metric-I. Response Time (RT ):

RT =
∑

i=1..N

RTi/N (1)

with RTi being the individual job time response and N being the
number of jobs processed during the execution period [11];

Metric-II. Throughput is defined as the number of work units executed
on the Grid in a pre-defined interval of time [11].

There are many cases in which a Grid resource or service may fail in a
dynamic, heterogeneous, and large-scale environment. Failures may occur in
a Grid at infrastructure, middleware, application, and user levels, and may be
transient or permanent; for a review of research focusing on causes of failures
in Grid we refer to [18]. Due to the heterogeneity of Grids and their sheer size,
failures appear much more often than in traditional parallel and distributed
environments [10, 19]. We employ a third performance metric, namely:

Metric-III. Failure Rate [18], defined as the ratio of completed jobs to
the total amount of jobs submitted from a fixed set of jobs.
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4. KOALA-based User-Transparent Scheduling
Evaluation

In this section, we report the results of our work to support user-transparent
scheduling within the KOALA Grid scheduler and the experimental results for
three HOC types on the Dutch Grid system, DAS-2 [15].

4.1 Integration Feasibility

For efficiently scheduling HOCs and applications built of them, we extended
the KOALA scheduler with support for cost-based mapping of applications to
resources, aggregated submission and reusable schedule identification. The
standard KOALA version provided resource reservation and job co-allocation,
basic job submission, tracking of job execution and re-submissions.

Our enhanced KOALA version adds the implementation of a specialized
KOALA runner, the MDRunner, for handling HOC-based applications as ex-
plained in the following. Each HOC client starts such a MDRunner, while
KOALA processes jobs as co-allocated jobs and performs adequate reserva-
tions.

In the resulting infrastructure, the responsibilities are distributed as follows:

HOCs provide a high-level interface to the end user, allowing to compose
applications in terms of patterns such as a wavefront or a pipeline;

The MDRunner makes the scheduling of HOC applications transparent to
the user. It automatically generates the scheduling requirements descrip-
tions for instantiating a specific HOC pattern (Farm, Pipeline, Wave-
front, etc); it also decides if aggregated submission or schedule reuse
could be employed for the current application;

The KOALA engine performs the resource acquisition and aggregation,
by collecting information about resources, keeping track of application
requirements and scheduling components to different Grid sites;

The MDRunner and the KOALA engine share the functionalities of moni-
toring the application progress and the preservation of application-
specific constraints, e. g. , time limits to be met.

The MDRunner implements six cost functions that optimize over different
communication requirements [8]:

1 link count-aware: optimizes over the number of network connections a
message has to pass;

2 bandwidth-aware: optimizes over the available bandwidth of a link;
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3 latency-aware: optimizes over the latency of a link;

4 network utilization-aware: optimizes over the instantaneous network uti-
lization at the submission time;

5 application communication-aware: optimizes over the communication
pattern;

6 predicted variance-aware: optimizes over the predicted network band-
width availability during the entire execution.

The gain in performance of each of these costs is analyzed in the following
subsections.

4.2 Performance Results

We have performed 10 runs of each HOC type using synthetic applications
that imitate the behavior of a real application in terms of communication pat-
terns and computation requirements. We present our results for the three per-
formance metrics as defined in the previous section. Each HOC-based appli-
cation was composed of 15 to 20 work units and exchanged 20 messages with
variable sizes between 1Mb to 10 Mb.

4.2.1 User Gains. We focus first on the response time for the user,
achieved by our scheduling approach. The results are provided in Table 1, with
all the values being expressed as percentages of the response time achieved
under the KOALA’s default scheduling policy. As can be observed, our tech-
niques support a reduction of the response time by 60% in average.

Table 1. Average Response Time (%)

Synthetic HOC Workload Type
Cost Farm Pipeline Wavefront
Function 20×30×1M 20×30×10M 20×30×5M

CF (Close-to-File) 51.89 70.09 73.20
Link 45.37 55.06 65.40
Bandwidth 40.93 53.67 60.95
Latency 48.47 48.89 68.75
Network 48.54 50.52 67.15
Application 42.72 56.53 58.83
Predicted 44.02 53.63 57.96

4.2.2 Resource Provider Satisfaction. We show now the through-
put performance when schedules are reused for HOC-based applications that
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exhibit the same workflow, i.e., they employ the same HOCs in identical order.
Table 2 captures our results. We observe a high throughput improvement due to
the schedule reuse: the reduction of the scheduling overhead allows to increase
the total throughput by more than 100% in our test scenario, where synthetic
HOC applications were submitted under a Poisson distribution. These appli-
cations involved 20 work units, 30 messages of sizes between 1 and 10 Mb
(detailed in the Tables’ headers) [8].

Table 2. Throughput Gains (%)

Synthetic HOC Workload Type
Cost Farm Pipeline Wavefront
Function 20×30×1M 20×30×10M 20×30×5M

CF 93.7 112.9 101.8
Link 100.7 116.3 161.0
Bandwidth 118.6 126.4 170.4
Latency 117.4 133.6 161.6
Network 106.3 134.8 170.2
Application 101.0 117.4 127.3
Predicted 118.2 123.6 194.0

4.2.3 Failure Analysis. Now, we turn our attention to analyzing the
success rate of HOC applications on DAS-2. We classify failures into two
types [10]:

job failure is defined as the incapacity to run a job at a certain site, error
that results in the entire workflow failure;

workflow failure is defined as the incapacity to either start or complete
the workflow; this error is usually caused either due to a failure in sub-
mission or in the resource acquisition mechanism.

For this analysis, we experimented with over 20k work units (corresponding
to ≈ 1k workflows). Our results are presented in Table 3. While, in average, the
rate of failures dropped under user-transparent scheduling approach, the work
unit execution failures increased due to the DAS-2 uSLA [12] for stopping
jobs longer than 15 minutes and our approach for schedule reuse. Thus, a
more careful approach should be devised for these scenarios in the future.

5. Related Work

In the context of application-to-resource dynamic binding, the optimal map-
ping problem has been approached in different ways for various types of sys-
tems.
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Table 3. Detailed Failures (%)

Failure Type User-Transparent Basic Scheduling
Remote environment failure 5 11
GridFTP failure 0 0
Work unit execution failure 4 2
Workflow submission timeout failure 1 5
Total job failures 9 13
Total workflow failures 10 18

For example, Aldinucci et al. [1] focus on the ASSIST coordination lan-
guage - a language that allows to describe arbitrary graphs of modules which
are connected by typed streams of data. A specialized compiler translates the
graph of modules into a network of processes on the Grid, under pre-specified
rules. The difference in our approach is that we avoid application migration,
because this feature is costly in practice, and we use instead the schedule reuse
technique.

In [2], the Performance Evaluation Process Algebra (PEPA) for expressing
performance models is described. PEPA [2] is also used in [1] for the analysis
of the static information about a structured parallel application, given by its
flow graph. In our work, we combine the information given by the static struc-
ture of a parallel program with monitoring information gathered at runtime.

Furmento et al. [20] analyze two main policies when considering appli-
cation performance for Grids: Minimum Execution Time and Minimum Cost.
They also introduce three cost models (unit cost per unit time and processor).
Based on these assumptions, they derive various prediction results about the
performance of a specific application (linear equation solver). Their initial re-
sults demonstrated the importance of finding the effective utilization of Grid
resources by high performance applications, as well as the importance of in-
formation associated with various components in the system. The experiments
were conducted in a small computational setting composed of at most three
systems that had between 1 and 16 processors, while no Grids were considered.

6. Conclusions

In this paper we introduced the user-transparent scheduling approach for
Higher-Order Components and analyzed it from four perspectives, namely:
the easiness of integration within already existing Grid scheduling infrastruc-
tures, the gains for individual users, the resource provider satisfactions and the
change in job failures. The motivations of this work are Grid applications
that increasingly rely on workflows using well-structured, reusable compo-
nents. Our approach combines several scheduling techniques, like cost-based
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technique for lowering the communication costs, reusable technique for avoid-
ing the need for a repeated scheduling phase when a workflow recurs, and
aggregated submission technique. We performed our evaluation by extend-
ing the KOALA Grid scheduler to support user-transparent scheduling, and by
running the extended version on the DAS-2 testbed combining over 200 nodes
at five sites in the Netherlands. Our experimental results show an increase in
throughput with more than 100%, a lowering of the response time by 50%, and
a failure reduction by 45% for the considered scenarios.
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Abstract Interactive Problem Solving Environments (PSEs) offer an integrated approach
for constructing and running complex systems, such as distributed simulation
systems. To achieve efficient execution of High Level Architecture (HLA)-based
distributed interactive simulations on the Grid, we introduce a PSE called Grid
HLA Management System (G-HLAM) for their management. This is done by
introducing migration and monitoring mechanisms for such applications. In this
paper we present how G-HLAM can be applied to the applications supporting
surgeons with simulations of vascular reconstruction, using distributed federa-
tions on the Grid for the communication among simulation and visualization
components.
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1. Introduction

Problem Solving Environments (PSEs) are integrated computational sys-
tems that allow scientists to define complex problems, find the required near-
est components and resources available, and utilize them efficiently. PSEs offer
an integrated approach for constructing and running complex systems, such as
distributed simulation and decision support systems.

In this paper we focus on PSEs for running distributed interactive simula-
tions on the Grid. This effort gives a potential opportunity for better and more
convenient usage of distributed resources that are needed by such simulations,
but were previously inaccessible and are now available through Grid.

There are solutions that may be used as underlying frameworks for such
PSEs. One of them is the High Level Architecture (HLA) [11] which of-
fers many features for developers of interactive and distributed applications.
HLA enables merging geographically distributed parts (called federates) of
simulations (called federations) into a coherent entity. It is explicitly designed
as support for interactive distributed simulations, it provides various services
required for that specific purpose, such as time management, useful for time-
driven or event-driven interactive simulations. It also provides data distribution
management and enables all application components to access the entire appli-
cation data space in an efficient way. On the other hand, the HLA standard
does not provide automatic setup of HLA distributed applications and there is
no mechanism for migrating federates according to the dynamic changes of
host loads or failures, which is essential for Grid applications. Therefore, there
is a need for a PSE that would manage HLA-based collaborative environments
on the Grid.

The Grid Services concept provides a good starting point for building the
Grid HLA Management System (G-HLAM) for that purpose, as described in
[23]. The concept of G-HLAM can be also ported to component platforms like
CCA [4], H2O [14], ProActive [20] or Grid Component Model [10].

The paper is organized as follows: in Section 2 we present an overview of
most important PSEs for distributed interactive simulations. For each of these
environments, we analyse the advantages and disadvantages for adapting Grid
solutions. In Section 3 we describe benefits of using HLA for our purposes and
present G-HLAM system. In Section 4 experimental results are presented and
we conclude in Section 5.

2. PSEs for distributed interactive applications

This Section presents the overview of Problem Solving Environments which
may be applied for interactive distributed applications.
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2.1 Computational Steering Environment

The aim of the Computational Steering Environment (CSE) [6] is to provide
scientific end users with an environment in which they can easily define inter-
active interfaces to ongoing simulations. The CSE architecture is implemented
as a set of processes - called satellites - which implement standard visualization
operations. The simulation is also seen by the system as a satellite. Satellites
cooperate by sending and receiving data from a central data manager which,
in turn, notifies all interested satellites about data mutations. The most pre-
dominant satellite is the interactive graphics editing tool called Parametrized
Graphics Object (PGO) editor, which allows the end user to sketch out visu-
alizations. A two-way binding between visualization and data is achieved by
binding the sketch to data within the data manager. CSE uses the TCP/IP proto-
col as a communication layer between satellites. The main disadvantage of the
CSE is its centralization, which hampers its scalability in Grid environments.
However, the idea of a data manager and satellites can be somehow extended
(e.g. by building hierarchical or distributed data sets).

2.2 CUMULVS

Collaborative User Migration, User Library for Visualization and Steering
(CUMULVS) [13] allows the programmer to add interactive steering and vi-
sualization to an existing parallel or serial program (task). With CUMULVS,
each of the collaborators can start up an independent view program that will
connect to the running simulation program. Viewers allow scientists to browse
through the various data fields being computed and observe the ongoing con-
vergence toward a solution. CUMULVS also allows an application program
to perform user-directed checkpointing and automated restarts of parallel pro-
grams using checkpointing, even across a heterogeneous cluster of machines.
A single user library interface routine passes control to CUMULVS periodi-
cally, to transparently handle the viewer attachment / detachment protocols,
the selection and extraction of data, and the updating of steering parameters.
CUMULVS allows each front-end viewer to interactively select the granularity
and extent of data that it desires to view. Currently, CUMULVS uses PVM [21]
as its message passing substrate; it allows for pairs of anonymous tasks to com-
municate with each other without both tasks being started at the same time.
MPI does not allow these dynamics, so porting CUMULVS ideas to MPI would
not be easy.

2.3 Cactus Problem Solving Environment

Cactus [1] is an open-source problem solving environment designed for sci-
entists and engineers. The name Cactus comes from the design of a central
core, which connects to application modules - or thorns - through an extensible
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interface. Thorns can implement custom-developed scientific or engineering
applications, such as the Einstein solvers, or other applications such as compu-
tational fluid dynamics. Cactus is an environment for a wide range of issues,
here we concentrate on its support for parallel or distributed simulations and
their visualisation. In Cactus, different thorns can be used to implement differ-
ent parallel paradigms, such as PVM, Pthreads [17], OpenMP [19], CORBA
[5], MPICH-G etc. Cactus can be compiled with as many driver thorns as re-
quired (subject to availability), with the one actually used chosen by the user at
runtime through a parameter file. Cactus provides the ability to stream online
data from a running simulation via TCP/IP socket communications. Multiple
visualization clients can connect to a running Cactus executable via a socket
from any remote machine on the Grid, then request arbitrary data from the
running simulation and display simulation results in real time. This can be
done in two ways: by an HTTP control interface or through socket connec-
tions. Cactus already provides support for Grid–enabled MPI – MPICH-G. Its
main disadvantage is that the parallelization is limited to domain decomposi-
tion. However, because of the modular architecture of Cactus, it appears that
adding extended functionality would be quite easy for application developers.

2.4 Discover

Discover [15] is a interactive and collaborative system that enables geo-
graphically distributed scientists and engineers to collaboratively monitor, and
control high performance parallel/distributed applications using web-based por-
tals. Discover provides a three-tier architecture composed of detachable thin
clients at the front-end, a peer-to-peer network of servers in the middle, and the
Distributed Interactive Object Substrate (DIOS++) at the back-end. An impor-
tant part of Discover is a rule-based visualization system. Rules are decoupled
from the system and can be externally injected to manage such visualization
behavior at runtime, as autonomically selecting the appropriate visualization
routines and methods and adjusting the extraction threshold. To allow rule–
based management, DIOS++ provides autonomic objects that extend applica-
tion computational objects with sensors to monitor the state of the objects. It
also contains actuators to modify the state of the objects, access policies to
control accesses to sensors and actuators and rule agents to enable rule-based
autonomic self-management. Discover uses HTTP for connection with visual-
isation thin clients and CORBA for communication with application engines.
Discover already possesses a distributed and scalable peer-to-peer type of ar-
chitecture. However, it can still be extended to take advantage from Grid tech-
nology, which would enable it to be automatically set up and effectively run in
a non-centrally controlled environment consisting of different administrative
domains.
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2.5 TENT

TENT [24] is a software integration and workflow management system that
helps improve the building and management of process chains for complex
simulations in distributed environments. TENT allows for online steering, and
visualization of simulations. Wrappers are used to interface application mod-
ules (e.g. Computation Fluid Dynamics (CFD), Computation Structural Me-
chanics (CSM), visualisation or filters) with the system. The system consists
of base components which include: modules for controlling workflows; fac-
tories for starting system and applications in the distributed environment; the
name server as the central information service. There are also support com-
ponents – additional services for special application scenarios not covered by
the basic functionality. Examples include: a data server for storing data files, a
monitoring and reporting component, and several special control components
(e.g., for coupled simulations like the ones parallelized with MPI). The system
is controlled by a user through a GUI. TENT uses CORBA for communica-
tion between parts of the system. TENT is already Grid–enabled: it supports
MPICH-G2 simulations. The Globus Toolkit version 2 is used for resource
selection, for starting applications, and for data transfer and security.

2.6 Interactive Simulation Systems Conductor

Interactive Simulation Systems Conductor (ISSConductor) [27] is an agent
oriented component framework for Interactive Simulation Systems. The sys-
tem introduces two kinds of agents: Module Agents that are specific for differ-
ent modules of interactive application like simulation, visualization and inter-
action and Communication Agents that are used for communication between
Module Agents and actual modules. Module Agent uses an extended finite
state machine to model the run-time behavior of a component, and adopts first
order logic to represent the interaction constraints between components and to
implement them in the knowledge bases of agents. ISS-Conductor separates
the basic computational functions of a component from its run-time behavior
controls, and provides a high level interface for users to design interaction sce-
narios. The framework is very general and can be used for various interactive
applications. ISS-Conductor is built on top of HLA described in the previous
Section. Currently, ISS-Conductor is not Grid-enabled, however it can easily
take advantage of the system presented in this paper, since it is built over the
HLA standard.

2.7 Comparision of existing PSE’s

In this Section we have presented environments that support interactive
steering of simulations. For each of presented systems we described the
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Table 1. Main features of the interactive simulation and visualization environments

System Type of simulation
and its distribution

Protocol Porting to the Grid issue

CSE runtime steering – mul-
tiple visualizations for
one simulation

TCP/IP scalability issue

CUMULVS runtime steering of
parallel simulations
(PVM)

PVM porting to MPI issue

CACTUS runtime steering of
parallel or distributed
simulations PVM,
Pthreads, OpenMP,
CORBA, MPICH-G

two possi-
bilities:
1) HTTP
2) HDF5
format
over
TCP/IP

support for MPICH-G

Discover parallel and distributed
applications in general

HTTP,
CORBA

scalable architecture that could
be extended to allow automatic
setup and effective run in non-
centrally controlled Grid envi-
ronment

TENT parallel and distributed
simulations

CORBA TENT is already Grid enabled
by using GTv2 and MPICH-
G2 features [24]

ISS-Conductor distributed simulations HLA no adaptation to changing en-
vironment, no automatic setup,
no dynamic discovery

architecture and protocols used to connect simulations with visualizations. For
each of the systems we also analyzed the possibilities of adapting it to the Grid
environment. A summary of the features of the presented systems is show in
Tab. 1. CSE, CUMULVS, Cactus, Discover and TENT focus more on sup-
port for steering simulations without much concern for advanced simulation
composition from distributed components which often use different time man-
agement. ISS-Conductor is a high–level system built over HLA - a standard
allowing for interoperability between different types of simulations. Basing on
this analysis, we have chosen HLA as a base for distributed interactive simu-
lations running on the Grid. It is a well recognized standard and offers all the
necessary functionality for simulation developers. Its important feature is that
the local time management mechanism of one simulation component (federate)
is not visible to other federates. Hence, all forms of time management (time–
driven, event–driven, parallel discrete event, real–time–driven) may be linked
together. HLA also allows to build scalable simulation systems. It separates
the communication infrastructure from the actual simulation. Additionally, it
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introduces a uniform way of describing events and objects being exchanged
between federates. All of these features allow interoperability between various
simulations. Although HLA originates from the defense technology, there is
a growing interest from non-military areas like manufacturing, transportation
and gaming industries. Therefore companies are currently working on more
scalable and efficient implementations of the standard [22]. Recently, open
source implementation was also released [18].

3. PSE for HLA-based simulations

3.1 Need for a Grid for HLA-based applications

Usually, parts of distributed simulations require different resources: quick
access to database, computational power or specific VR hardware. It is quite
unlikely to find those resources at one geographical site. Additionally, if more
simulations need to be run concurrently, one site with computational power
may not be sufficient. A similar problem arises when many visualisations
(users) located in different places want to observe the same simulation. There-
fore, the application modules usually have to be located in geographically
different places and the Grid concept that facilitates access to computing re-
sources may be a very promising approach here.

As stated above, HLA has advanced mechanisms supporting distributed
simulations, so execution of HLA–based applications on the Grid should be
natural extension of its usage. However, the HLA standard was developed as-
suming a certain quality of service in the underlying environment. Therefore,
there is a need for adaptation of HLA–based applications to the dynamically
changing Grid as well as for automatic setup, dynamic discovery and fault-
tolerance mechanisms.

The Grid [7] is designed to coordinate resources that are not under central
control. Additionally, the Web services [25] concept of abstract interfaces al-
lows for modular design (OGSA, WSRF) [8]. However, the Grid environment
is shared between many users and its conditions can change in an unpredictable
way. Therefore, there is a need for a system that adapts HLA-based appli-
cations to a dynamically–changing environment and requires fault tolerance
mechanisms such as migration of its distributed federates or their monitoring.

In addition, the Grid idea is to facilitate access to computing resources and
make it more transparent to the user. Currently, setting up distributed applica-
tions based on HLA requires tedious setup and configuration. The HLA stan-
dard does not cover aspects of dynamic discovery of HLA federations. There-
fore, there is a need for a mechanism that sets up an HLA–based application
on geographically distributed system (i.e. the Grid) in a more convenient way.
Subsequently, HLA federates should be able to find one another dynamically
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and transparently to the user. Additionally, HLA does not provide security
mechanisms similar to the one provided by the Grid Security Infrastructure
(GSI) [9].

3.2 Grid HLA Management System
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Figure 1. Grid HLA Management System Architecture (G-HLAM consists of services which
control the whole HLA application and the services that should be installed on each HLA-
enabled Grid site.

The Grid HLA Management System (G-HLAM) supports efficient execution
of HLA-based simulations on the Grid. The system is built on top of the Open
Grid Services Infrastructure as presented in [26, 23, 12]. In the future we would
like to use also lightweight Grid Component platform [2] for that purpose.

The architecture of G-HLAM system is shown in the Fig. 1. The group
of main G-HLAM services consists of: a Broker Service which coordinates
management of the simulation, a Performance Decision Service which de-
cides when the performance of any of the federates is not satisfactory and
therefore migration is required, and a Registry Service which stores informa-
tion about the location of local services. On each Grid site, supporting HLA,
there are local services for performing migration commands on behalf of the
Broker Service, as well as for monitoring federates and benchmarking. Ap-
plication Monitoring Services are based on the OCM-G monitoring system
[3]. The HLA–Speaking Service is one of the local services interfacing fed-
erates with the G-HLAM system, using GRAM for submission of federates.
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A more detailed description of the HLA-Speaking Service, together with the
GridHLAController library, which actually interfaces the application code with
the system, can be found in [12].

4. Application of G-HLAM to vascular reconctruction

In this section we present results of the experiment in which G-HLAM was
applied as the prototype collaborative environment for vascular reconstruction.
The prototype consists of two types of modules communicating with HLA:
simulation module (MPI parallel simulation) and visualization-receiver mod-
ules (responsible for receiving data from the simulation). At each time step,
the simulation calculates velocity vectors of simulated blood flow in 3D space
and sends them to visualisations modules. In our experiment, we have mea-
sured the duration time of first 8 steps of the simulation that included actual
calculations and sending time.

We show how migration improves performance from the point of view of
the user – i.e. how sending output data from the simulation changes after mi-
gration if the partial simulation results are actually observed by someone. The
experiment was performed on the DutchGrid DAS2 testbed infrastructure and
at CYFRONET, Krakow, as shown in Tab. 2. We used GT v3.2 and HLA RTI
1.3v5. In the presented experiment one simulation was migrated. The num-

Table 2. Grid testbed infrastructure

Operating System Red Hat Enterprise Linux Advanced Server, version 3
Network 10 Gbps (DAS2) + 155 Mbps (DAS2-Cyfronet)

Role Name CPU RAM
Migration source DAS2 Nikhef Pentium III 1 GHz 1 GB

Migration destination DAS2 Leiden Pentium III 1 GHz 2 GB
visualizations DAS2 Delft Pentium III 2GHz 2 GB

DAS2 Utrecht Pentium III 1 GHz 1 GB
DAS2 Vrije Pentium III 1 GHz 2 GB

RTIexec Cyf Krakow Xeon 2.4 GHz 1 GB

ber of visualization-receivers was fixed and equal to 25. In this experiment we
show how migration can improve the efficiency of simulation execution when
its results are sent online to many users. The bandwidth available for testing
was broad (10Gbps), so communication did not play an important role and
calculations were the most time–consuming part of the execution. In order to
create conditions in which migration would be useful, we increased the load
of the Grid site where the simulation was executed (cluster in Amsterdam) by
submitting non–related, computationally–intensive jobs. Next, we imitated a
Resource Broker and migrated the simulation to another site which was not
overloaded (cluster in Leiden). The actual migration was conducted by Migra-
tion Service using HLA–Speaking Service. The experiments were performed
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Table 3. Impact of migration on simulation performance within the collaborative environment

Number of Calculations plus sending Note
simulation’s step from sim. to vis. time

1 112 before migration
2 109 before migration
3 100 before migration
4 177 including migration
5 30 after migration
6 45 after migration
7 46 after migration
8 39 after migration

at night in order to avoid interference from other users. Tab. 3 shows duration
times of interactive steps with a human in the loop (for the first 8 steps). At
each step, the simulation calculates data and sends it to the 25 visualization-
receivers modules using HLA. Tab. 3 shows that before migration the average
time in a single step was around 107 sec and after migration around 40 sec
(which is 2.6 times shorter). The time of the step when migration was per-
formed was 1.6 longer then the average time before migration. The results
show that it is better to spend some time on migration to another site, from
where the response time is shorter. In our experiment, in each step, the simu-
lation produces 52000 velocity vectors of simulated blood flow in 3D space.

5. Summary and future work

In this paper we have presented the brief analysis of PSEs supporting the
development, execution and/or steering of simulations. For each of these envi-
ronments, we have analysed the advantages and disadvantages for adaptation
of Grid solutions. According to our analysis, there was no solution that allowed
to run HLA simulations, including legacy codes, on the Grid in efficient way as
it can be achieved by the system we have developed – G-HLAM. In particular,
we have shown that migration of badly performing parts of simulations to a
better location reduces computation and communication time and effectively
improves the overall performance.

The future work will concentrate mainly on using component architectures
(like CCA [4], H2O [14], ProActive [20], GCM [10]), as they are a very
promising approach due to such features as lightweight environments [2], dy-
namic behavior, scalability to suit various environmental requirements etc. Ap-
plying the advantages of these technologies to distributed interactive simu-
lations will allow not only for technological migration of existing G-HLAM
functionality, but also for it’s extension to achieve reusability and interoper-
ability of simulation models.
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Abstract Enabling high-level programming models on grids is today a major challenge.
A way to achieve this goal relies on the use of environments able to transpar-
ently and automatically provide adequate support for low-level, grid-specific is-
sues (fault-tolerance, scalability, etc.). This paper discusses the above approach
when applied to grid data management. As a case study, we propose a 2-tier soft-
ware architecture that supports transparent, fault-tolerant, grid-level data sharing
in the ASSIST programming environment (University of Pisa), based on the
JuxMem grid data sharing service (INRIA Rennes).
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1. Introduction

Grid computing has emerged as an attempt to provide users with the illusion
of an infinitely powerful, easy-to-use computer, which can solve very complex
problems. This very appealing illusion is to be provided (1) by relying on
the aggregated power of standard (so, inexpensive), geographically distributed
resources owned by multiple organizations; (2) by hiding as much as possible
the complexity of the distributed infrastructure to users. However, the current
status in most software grid infrastructures available today is rather far away
from this vision. When designing programs able to run on such large-scale
platforms, programmers often need to explicitly take into account resource
heterogeneity, as well as the unreliability of the distributed infrastructure. In
this context, the grid community converges towards a consensus about the need
for a high-level programming model, whereas most of the grid-specific efforts
are moved away from programmers to grid tools and run-time systems. This
direction is currently pursued by several research initiatives and programming
environments, such as ASSIST [17], eSkel [9], GrADS [14], ProActive [8],
Ibis [16], Higher Order Components [11], etc., along the lines of CoreGRID’s
“invisible grid” approach to next generation grid programming models.

In this work, we explore the applicability of the above approach to data
management for high-level grid programming. We consider three main aspects
that need to be automatically handled by the data storage infrastructure: data
access transparency, data persistence and storage fault-tolerance.

Transparent access to data across the grid. One of the major goals of
the grid concept is to provide an easy access the underlying resources, in a
transparent way. The user should not need to be aware of the localization of
the resources allocated to the application submitted. When applied to the man-
agement of the data used and produced by applications, this principle means
that the grid infrastructure should automatically handle data storage and data
transfer among clients, computing servers and storage servers as needed. How-
ever, most projects currently still rely on the explicit data access model, where
clients have to move data to computing servers. In this context, grid-enabled
file transfer tools have been proposed, such as GridFTP [5], DiskRouter [12],
etc. In order to achieve a real virtualization of the management of large-scale
distributed data, a step forward has been made by proposing a transparent data
access model, as a part of the concept of grid data-sharing service, illustrated
by the JuxMem software experimental platform [6].

Persistent storage of data on the grid. Since grid applications typically
handle large masses of data, data transfer among sites can be costly, in terms
of both latency and bandwidth. Therefore, the data-sharing service has to
provide persistent data storage. Data produced by one computation can be
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made available to some other computation through direct access via globally
shared data identifiers, by avoiding repeated transfers of large volumes of data
between the different components of the grid.

Fault-tolerant storage of grid data. Data storage on the grid must cope
with events such as storage resources joining and leaving, or unexpectedly
failing. Replication techniques and failure detection mechanisms are thus nec-
essary, in order to enhance data availability despite disconnections and fail-
ures. Such mechanisms need to be coupled with checkpoint/restart techniques
for application components with data replication mechanisms. This way, in
reaction to faults, checkpointed application components could be migrated to
available resources and restarted, as long as the application status and the ap-
plication data remain available thanks to fault-tolerant storage.

While the above properties are desirable in general for grid data sharing, in
this paper we restrict our discussion to the more specific case of applications
based on the ASSIST [3] programming environment, developed at the Univer-
sity of Pisa. ASSIST provides a programming model that enables transparent
data sharing among distributed execution entities. However, its dedicated stor-
age component (called ad-HOC [4]) does not enforce data persistence and is
not tolerant to node failures. Such features are exhibited by the JuxMem [6]
grid data-sharing service developed at INRIA Rennes, which enables transpar-
ent access to grid-scale storage, based on P2P techniques. The goal of this
paper is to study how ASSIST and JuxMem could be integrated, in order to
better support a high-level grid programming approach.

2. Analysis: using JuxMem to enable grid-level,
fault-tolerant storage in ASSIST

This section describes ASSIST’s main features, then briefly introduces the
data sharing facilities available with ad-HOC and JuxMem (which exhibit
complementary features); it finally proposes an integrated architecture which
takes advantage of this complementarity.

2.1 Data sharing in ASSIST

The ASSIST programming model. ASSIST applications are described by
means of a coordination language, which can express arbitrary graphs of soft-
ware modules, interconnected by typed streams of data. Modules can be either
sequential or parallel. A sequential module wraps a sequential function. A
parallel module (parmod) can be used to describe the parallel execution of a
number of sequential activities that run as Virtual Processes (VPs) on items
coming from input streams. Each stream realizes a one-way, one-to-many
asynchronous channel between sequential or parallel modules. VPs can be
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organized according to programmer-defined topologies (array, etc.). The AS-
SIST compiler implements VPs according to the underlying middleware. It
selects an appropriate granularity by mapping a subset of a parmod’s VPs to
the basic execution entity, e.g. a POSIX process/thread, a Globus Grid Ser-
vice, or a Web Service. The full support for the forthcoming CoreGRID Grid
Component Model (GCM) is currently under investigation [10, 2].

Data sharing in ASSIST. The ASSIST programming model enables data
sharing both within VPs of the same module and between different modules
by means of two different methods, respectively:
Attributes, which are global, typed variables of the module. Attributes are

owned either by the module itself or by VPs; in particular arrays owner-
ship can be partitioned among VPs according to user-defined rules.

References, which are global pointers in a shared memory space that is log-
ically external to all application modules, thus can be accessed across
different modules. ASSIST provides the programmer with an API to
allocate, read, and write data structures in the shared space.

Note that, in both cases, ASSIST does not implement a built-in DSM to enable
memory sharing; it rather provides hooks to attach ASSIST run-time support
to an external DSM. This allows to test different solutions for data sharing,
since the DSM can be replaced with almost no impact on the core code of the
compiler and of its run-time support. Currently, ASSIST comes with a DSM
built on top of a set of cooperating ad-HOC memory servers [4].

These variables adhere to the transparent data access model: programmers
should neither care about data placement nor data splitting and distribution.
These tasks are transparently and efficiently carried out by ad-HOC. However,
in order to enforce fault-tolerance (and irrespectively of the checkpointing tech-
nique), ASSIST run-time needs to rely on permanent and robust data storage.

2.2 Existing building blocks: ad-HOC and JuxMem

Cluster-level sharing: ad-HOC. ad-HOC (Adaptive Distributed Herd of
Object Caches), is a distributed object repository [4] developed at University of
Pisa. It provides the programming environment designer with building blocks
to set up client-server and service-oriented infrastructures for data storage man-
agement. Clients may access data in servers through different protocols, which
are implemented on client-side within a proxy library.

A set of cooperating ad-HOC servers implements a permanent storage facil-
ity, i.e. a repository for arbitrary length, contiguous segments of data, namely
objects since each data chuck is wrapped and stored and in an object homed
in one of the servers [4]. Objects can be grouped in ordered collections of
objects, which can be spread across different servers. Both objects and their
collections are identified by keys with fixed length. In particular, the key of
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a collection specifies to which spread-group the collection belongs. Such a
group specifies how adjacent objects in the collection are mapped across the set
of servers. Both classes of shared objects described in the previous section (at-
tributes and references) are implemented in ASSIST via ad-HOC object collec-
tions and can thus be stored in a distributed way. The ad-HOC API enables to
get/put/remove an object, and to create/destroy a key for a collection of
objects. Each ad-HOC manages an object storage area for server home objects
and a write-back cache for objects with a remote home. Basic ad-HOC oper-
ations do not natively ensure data coherence of cached objects. Nevertheless,
server operations can be extended via the special operation execute that en-
ables application proxies to put a serialized C++ object1 in a server and invoke
its run method to issue a consistent access (e.g. lock/unlock, coherent put, etc).

The extremely simple ad-HOC API is mainly aimed to implementation ef-
ficiency, which relies on non-blocking I/O. On each port, an ad-HOC can ef-
ficiently serve many clients, each of which supports thousands of concurrent
connections while squeezing a close to ideal bandwidth even for fine-grained
data accesses [4]. A set of ad-HOCs can efficiently cooperate across multi-tier
networks and clusters with private address ranges, even when they are pro-
tected by firewalls. However, ad-HOC does not implement any form of fault-
tolerance or automatic data replication: in the case a server permanently leaves
the community implementing the data storage, some of the stored data will be
lost. This problem is particularly severe if data structures are spread across all
servers, since losing a single server may induce the corruption of the whole
dataset.

Grid-level sharing: JuxMem. The JuxMem [6] grid data sharing service
developed at INRIA Rennes transparently manages data localization and per-
sistence in dynamic, large-scale, distributed environments. The data sharing
service concept is based on a hybrid approach inspired by Distributed Shared
Memory (DSM) systems (for transparent and consistent data sharing) and peer-
to-peer (P2P) systems (for scalability and volatility tolerance). The data shar-
ing service can also transparently replicate data to ensure its persistence in
case of failures. The consistency of the various replicas is then implemented
through adequate fault-tolerant consistency protocols [7]. This approach will
serve as a basis to the architecture proposed in this paper.

The JuxMem API provides the users with classical functions for allocating
(juxmem malloc) and mapping/unmapping memory blocks (juxmem mmap,
etc.) When allocating a memory block, the client can choose to replicate data
to enhance fault-tolerance, and then has to specify: (1) on how many clusters
the data should be replicated; (2) on how many providers in each cluster the

1Object data is serialized at run-time and send to the server, while code must be provided (in advance) to
the server as dynamically linkable library.
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data should be replicated; (3) the consistency protocol that should be used to
manage this data. This results into the instantiation of a set of data replicas
(associated to a group of nodes), called data group. The allocation operation
returns a global data ID. This ID can be used by other nodes in order to identify
existing data. It is JuxMem’s responsibility to localize the data and perform
the necessary data transfers based on this ID. This is how JuxMem provides
a transparent access to data. To obtain read and/or write access on a data,
a process that uses JuxMem should acquire the lock associated to the data
through either juxmem acquire or juxmem acquire read. This permits to
apply consistency guarantees according to the consistency protocol specified
by the user at the allocation time of the data. Note that juxmem acquire read
allows multiple readers to simultaneously access the same data.

The general architecture of JuxMem mirrors a federation of distributed
clusters and is therefore hierarchical. The goal is to accurately map the phys-
ical network topology, in order to efficiently use the underlying high perfor-
mance networks available on grid infrastructures. Consequently, the archi-
tecture of JuxMem relies on node sets to express the hierarchical nature of
the targeted testbed. They are called cluster groups and correspond to physical
clusters. These groups are included in a wider group, the juxmem group, which
gathers all the nodes running the data-sharing service. Any cluster group con-
sists of provider nodes which supply memory for data storage. Any node may
use the service to allocate, read or write data as clients, in a peer-to-peer ap-
proach. This architecture has been implemented using the JXTA [1] generic
P2P platform.

Table 1. Properties for cluster-level and grid-level sharing.

Cluster sharing (ad-HOC) Grid sharing (JuxMem)

Throughput High Medium/High
Latency Low High
Fault-tolerance No Yes
Protocols for data consistency No Yes

ad-HOC and JuxMem: a quick comparison at hand. Due to different
design goals, ad-HOC distributed storage server and of the JuxMem data-
sharing service exhibit different features (as summarized in Table 1).

ad-HOC provides transparent and permanent access to distributed data. It
enables the distribution and the parallel access to collections of objects (e.g.
arrays). It is robust w.r.t. node additions and removal, which should be driven
by a proper node agreement protocol to guarantee data safety. It does not
checkpoint/replicate data, thus is not fault-tolerant. Data accesses exhibit low
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Figure 1. Target architecture illustrating the interaction of ad-HOC and JuxMem.

latency, high-bandwidth, high-concurrency and scalability. It is mainly tar-
geted to cluster-level sharing. It is developed in C++.

JuxMem provides transparent and permanent access to distributed data.
It is fully fault-tolerant w.r.t. node additions and fail-stop by means of data
consistent replication. Data accesses exhibit a higher latency, medium to high-
bandwidth, and scalability. It relies on the JXTA generic P2P framework. It is
targeted to grid-level sharing. It is developed in C and Java.

3. Proposal: an integrated 2-tier architecture

Memory hierarchy is an effective way to enhance data management effi-
ciency while respecting data access transparency. We propose a 2-tier mem-
ory hierarchy which trades off storage performance vs. robustness: it enables
ASSIST modules to rely on a fault-tolerant grid storage while still exploiting
low-latency/high-bandwidth data accesses, which are typical of a fast, cluster-
level DSM. The big picture is sketched in Fig. 1: the two levels of hierarchy
are called grid tier and cluster tier. The hierarchy is connected to an addi-
tional tier where computation is figured out (at the bottom on the figure). This
third level (represented at the bottom) also includes data storage that is local to
platforms2. The top two tiers of the memory hierarchy are specified as follows:
The grid tier enables data sharing across multiple parmods running on differ-

ent clusters. It is implemented via JuxMem. Accesses to data stored

2Register file level in classic memory hierarchies.
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in JuxMem are assumed to be less frequent, coarse-grained, with less
performance constraints.

The cluster tier enables data sharing among multiple parallel codes (VPs,
parmods) within a single cluster. It is implemented via an ad-HOC-
based storage component. Accesses to data stored in ad-HOC are as-
sumed to be frequent, fine-grained, with high-performance constraints.

In the following, we define why and when the data stored at the cluster level
should be copied/stored at the grid level and vice-versa. The answers come
directly from the analysis of hierarchy goals.

Sharing across multiple clusters. A natural interaction between the two
levels of the hierarchy will take place whenever data produced and stored on
a cluster (at the ad-HOC level) has to be made available on another cluster
(multi-site deployment). At the programming level this may be triggered by
passing a reference across the clusters via streams. Notice that this functional-
ity can also be implemented at ad-HOC level by “horizontally” connecting ad-
HOC storage components of different clusters. However, the hierarchical so-
lution has some advantages: (1) data can be shared also among different appli-
cations thanks to persistence of grid level; (2) ASSIST does not need any more
to handle the co-allocation of resources (possibly via job schedulers) for all
parmods distributed on different clusters, since JuxMem can serve as tempo-
rary storage; (3) data shared at this level can be considered safe w.r.t. node and
networks faults (as this aspect is handled by the JuxMem-based grid-level).

The first point allows the user to use command scripts implementing a func-
tionality similar to UNIX pipes in grid distributed fashion, while sharing data
among the different processes through JuxMem. The second point addresses
a very hot topic in grid middleware design: multi-site co-allocation. Let us
suppose as an example that modules mapped on cluster A (see Fig. 1) start well
before modules on cluster B. Data coming on stream from parmod 2 can be tran-
siently buffered on grid storage up to the moment parmod 4 starts. This scenario
can be extended to all cases in which data dependencies among clusters can be
described by a Direct Acyclic Graph (co-allocation is not logically needed).
The third point is discussed in details in the next paragraph.

Fault tolerant data storage/checkpointing. Since the ad-HOC provides
efficient access latency, it can be used as a cache for intra-cluster data shar-
ing. Since it is not fault-tolerant, the ad-HOC can periodically save application
data to JuxMem. This feature could also be used for application checkpoint-
ing in general, as the computation status can be saved together with the data.
Checkpointing is driven by ASSIST run-time support, which stores checkpoint
information on the cluster tier, and then triggers a flush of “dirty” objects to the
grid tier. Basically the cluster tier is used as a write-back cache. In the same
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way, this information could also be used to migrate parmods from one cluster
to another. In such a case, ad-HOC data can be saved to JuxMem on the initial
cluster and then read from JuxMem after migration on the second cluster.

Locality. The use of a memory hierarchy adequately supports clustered lo-
cality. Grids are generally structured as federations of clusters, where each
cluster is pretty homogeneous and exhibits high-bandwidth/low-latency con-
nectivity due to the spatial proximity and to the reduced security constraints,
but also to the use of high-performance System Area Networks, such as
Myrinet or Infiniband. High-level parallel languages and their run-time en-
vironments aim at enhancing clustered locality (1) by providing programmers
with language paradigms (constructs, skeletons, design patters, etc.) leading
to known and regular interaction patterns among concurrent activities; (2) by
statically and/or dynamically mapping/enforcing clustered locality of a groups
of activities demanding frequent interactions. A few examples are: the iterated
halo-swap paradigm and the block data distribution [9], the Divide&Conquer
paradigm supported by dynamical load balance based on hierarchical work-
stealing [15]. Component technology and related design methodologies further
enforce clustered locality by encouraging application designer to aggregate re-
lated activities within a (possibly compound) component. As result, most of
the shared memory accesses have a limited scope in terms of accessing enti-
ties, and those entities are preferably mapped and deployed on the same cluster,
thereby improving the local-to-remote access ratio.

4. ASSIST and fault-tolerance: a sample scenario

The simplest scenario showing how to exploit the benefits of the integrated
2-tier architecture leverages the fault tolerant data storage/checkpointing fea-
tures described above. In this scenario, parmods are considered in insulation.
The goal is to protect them against a site fail-stop (due either to node crashes
or to connectivity failures). The nature of the parmod construct suggests that
there exist a quite strong relationship among the parallel activities within it,
whereas activities in different parmods definitely exhibit a weaker relation-
ship. A parmod is therefore usually deployed within a single site. The parmod
status, which is normally stored in the ad-HOC tier, can periodically be snap-
shotted and saved into the JuxMem tier. As we shall see in the next section,
this can be done by leveraging already existing mechanisms that enforce the
generation of a coherent snapshot of the status. The snapshot can be enriched
with all the information needed to restart (in some other site) the parmod from
the snapshot that can retrieved from a JuxMem-managed backup copy living
on a still alive site. Other parmods can detect the site crash through a broken
stream event; among those, a leader elected via JuxMem tier support, can
restart a new copy of the parmod by instanciating the snapshotted status. If
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Figure 2. Implementation of proposed architecture using ad-HOC and JuxMem (the appli-
cation is sketched in Fig. 1). Dashed lines represent synchronizations inducing mediator actions.

necessary, the parmods directly connected with the restored one should update
their status before proceeding.

5. Design and Implementation

A prototypal implementation has recently been completed and is currently
being tested. It will mainly be used to analyze the hierarchy’s efficiency and
limitations in order to refine the design phase. The current implementation
relies on a set of external mediator processes that are started with ad-HOC
servers by the ASSIST launcher. The mediator can take into account remote
commands (through a TCP port), which trigger data copying from the cluster
tier to the grid tier and vice-versa. Available commands include copying a set
of ad-HOC objects (which can be spread across the nodes of the distributed ad-
HOC server) to new or to existing JuxMem memory areas, and vice-versa. In
both cases, the data exchanged between the two tiers flow through the mediator.
In one case, it reads a series of data objects from ad-HOC, collapses them in
a single data chunk, and writes it into JuxMem; in the other case, it fetches
a data chunk from JuxMem, splits and spreads it to ad-HOC servers of the
cluster. Such an interaction is represented in Fig. 5, where J processes act as
JuxMem storage providers and M processes (representing the mediators) act
as JuxMem clients. Mediators and providers can be hosted on the same node,
on different nodes in the same cluster or on different clusters.

These tasks leverage existing features of the ASSIST compiler. Since the
compiler can produce dynamically adaptable code, it already identifies within
parmod so-called reconf-safe points and instruments it with the required
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agreement protocols for coordinated checkpointing. In these points, the com-
piler can ensure a coherent and known state of application processes and the
shared memory. This information can be dumped, as it can serve to restart the
whole application or a proper subset of it from last reconf-safe point. This
technique has been successfully used to enable dynamic migration of VPs and
parmods [10].

Fault-tolerant storage. The proposed architecture can transparently be
used to provide fault-tolerant storage for ASSIST by using the primary-backup
approach, where the cluster tier behaves as a primary replica and the grid tier
as backup. In particular, attributes can be safely stored in reconf-safe points.
In these points ASSIST run-time triggers an update of backup copies via the
mediator process. A similar technique is used for references. However since
these are managed directly by programmers in the user code, the triggering is
achieved by extending the API with a safe write operation (alternatively, the
write operation can be transparently turned into a safe write operation).

Checkpoint/rollback. A fault-tolerant storage is necessary but not suffi-
cient to make ASSIST fault-tolerant. However, a parmod can easily be made
fault-tolerant by triggering a checkpoint of its data and status into JuxMem.
Starting from one of these checkpoints, a whole parmod can be rolled back by
using already existing primitives for dynamic adaptation (see [10] for details).

Ensuring fault-tolerance of a complete ASSIST application is slightly more
complex. This requires to equally taking into account the global status of
streams established among parmods. Classic techniques based on message
logging could than be used, while relying on the proposed memory hierarchy
as a stable storage. This point is under investigation.

5.1 Preliminary Experiments

The main goal of preliminary experiments conducted on the 2-tier architec-
ture aims to assess and quantify the behaviour of the two tiers, independently
considered, on the same running environment. At this end we run a set of
read/write benchmarks between the mediator and the two tiers on a cluster
composed of Intel Xeon5150@2.66GHz 8GBytes RAM nodes wired via a Gi-
gaEthernet. Benchmarks consist in the writing or reading of 1000 objects of
a given size. Tested configurations and results of write throughput benchmark
are shown in Fig. 3 for the ad-HOC tier, and Fig. 4 for the JuxMem tier. Each
tier is tested for its own peculiar features, i.e. objects distribution onto a set
of parallel servers for ad-HOC; and objects replication onto a set of memory
providers for JuxMem. Both sets of tests include the extreme case of a single
server (no distribution, no replication) where the two tiers behave identically.
Tests show that the two tiers achieve a very good throughput.



78 Achievements in European Research on Grid Systems

 all-to-all net (over GigaEth)

HH H

M

node 2node 1 node 3

node 5

M mediator

H ad-HOC process

H

node 4

 20

 40

 60

 80

 100

 120

8M2M512k128k32k8k2k51212832
T

hr
ou

gh
pu

t (
M

B
yt

es
/s

)

Object Size (Bytes)

ad-HOC write (1 client 1 server)
ad-HOC write (1 client 4 servers)
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As mentioned above, the ad-HOC does not include any protocol to manage
consistent data replication, thus it implements a lighter data access protocol
with respect to JuxMem. This enables ad-HOC to achieve the same through-
put of JuxMem for a smaller object size. Read throughput benchmarks, which
are not reported in the paper, gives almost identical figures. Notably, the ad-
HOC exploits a slightly better throughput when objects are not distributed (sin-
gle server case). This is due to the single connection between the mediator and
the ad-HOC servers. The bottleneck can be removed by connecting the medi-
ator with more than one ad-HOC server [4].

Differently from ad-HOC, JuxMem can transparently and consistently
manage object replication: this enables the definition of a permanent, fault-
tolerant tier. Obviously, consistent data replication has a cost. As shown in
Fig. 4, this cost linearly depends from the number of replicas in the case of
write operation. On the contrary, read operations exhibit a throughput similar
to write with no replicas independently of the number of replicas.

Overall, the preliminary experiments confirm the complementarity of the
two tiers, which deliver their optimal data throughput at different object size.
Experimental results enable to reason about the size increase and frequency
reduction the mediator should perform between the two tiers. These values do
not depends only from platforms and networks speed, but also from distribu-
tion and replication degree chosen for the two tiers, respectively.

6. Conclusion

This paper addresses the problem of how to support of high-level grid pro-
gramming by means of a software infrastructure that automatically and trans-
parently handles low-level, grid-specific issues, such as multi-site resource
distribution, fault-tolerance, etc. It proposes a hierarchical grid data storage
architecture whose goal is to provide the ASSIST grid programming environ-
ment with grid-scale, fault-tolerant data-sharing facilities, as provided by the
JuxMem grid data-sharing service. This work is a specific integration effort
between existing researches carried out by two partners within the Institute
on Programming Model (WP3) of the CoreGRID NoE. We mainly focus on
architecture design, however a prototypal implementation has recently been
completed and preliminary experiments are under way. The work in progress
concerns the assessment of the performance of memory accesses between the
two tiers of the hierarchy.

Long-term aims. Many approaches to data management on grid aim to
optimize the access to very large, quite localized, mostly read-only scientific
data [13]. However, in many real applications, data is inherently distributed
across application components. We believe that a mature programming model
for the grid should provide designers with an abstract view of the data, and
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a high-level API to access it. Due to the hierarchical nature of typical grid
platforms, any implementation of data management system will benefit from
a clear understanding of qualitative and quantitative aspects governing a dis-
tributed memory hierarchy on the grid. These aspects may be used to enhance
and automatize the distributed management of data in development tools for
the grid. The proposed architecture appears flexible enough to investigate
the benefits and overheads of hierarchical data management, and the extent
to which data can be transparently moved (horizontally and vertically) across
the tiers of the hierarchy.
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1. Introduction

Grid computing [18] enables the use a (very) large number of networked
processing resources equipped with suitable middleware to provide powerful
platforms that can be used to support high performance computing, pervasive
(global, ubiquitous) computing as well as to provide advanced “knowledge
utility” environments [17]. Developing parallel/distributed applications target-
ing the grid is in general more complex than developing similar applications
for traditional parallel architectures and workstation clusters. Besides being in
charge of the whole parallel application structure as well as of all the relative
communication, synchronization, mapping and scheduling structure, the pro-
grammer must also take into account that grid processing resources are often
heterogeneous and that the availability of both the computing and the intercon-
nection resources may vary in time. As the programmers usually write appli-
cations directly interacting with the middleware, the whole process is cumber-
some and error prone. In the last years, several efforts have been spent to face
this problem, and several approaches have been conceived to design high-level
programming languages/environments that can automate most of the tasks re-
quired to implement working and efficient grid applications. Some approaches
aim at providing programmers with different programming environments im-
plementing as much as possible the “invisible grid” concept advocated by the
EC Next Generation Grid Expert Group [22, 17]. As an example the Grid
Component Model (GCM) currently being developed within the CoreGRID
Institute on Programming model [10, 25] will eventually provide the grid pro-
grammers a component based programming model where all the details and
issues related to the usage of the grid as the target architecture will be dealt
with in the compiler and run time tools. Other approaches offer a lower ab-
straction level but allow more programming freedom and guarantee a higher
level of personalization. In other words, programmers can customize their
applications and deal with some aspects related to the parallelism as, for ex-
ample, parallelism degree and the parallel program structure (farm, pipeline,
...). The approaches belonging to this category force the programmer to struc-
ture the parallel application he wants to implement adequately. Typically, such
approaches allow the application “business logic” to be separated from the ac-
tivities required to coordinate and to synchronize parallel processes [15, 3].
On the other side, several environments have been proposed to use more clas-
sical, low level programming paradigms on the grid. Several implementation
of MPI [2] have been ported on top of different grid middleware [20] as well
as several implementations of different kinds of RPC have been designed [26,
19, 27]. However, all these approaches, while leaving the programmer a higher
freedom of structuring the parallel applications in an arbitrary way, require the
programmers explicitly deal with all the awkward details mentioned above.



PAL: Exploiting Java Annotations for Parallelism 85

In this work, we introduce Parallel Abstraction Layer (PAL) as a bridge be-
tween a currently popular programming model and the typical current parallel
computer architectures, such as clusters and the grid. To avoid the problems
typically present in a fully automated parallel approach [13, 4], PAL leaves to
programmer the responsibility to choose which parts of code have to be com-
puted in parallel through the insertion of non-functional requirements in the
source program code. Using the information provided by programmers PAL
transforms the program code into a parallel one which structure depends on the
specified non-functional requirements.

A prototype of PAL has been implemented using Java. It allows to autonom-
ically transforming the byte-code of an annotated method in a multithreaded
byte-code version, suitable for multiprocessor computers and in a parallel byte-
code version using the JJPF (a Java/Jini Parallel Framework, [11]) parallel pro-
gramming environment, targeting both clusters/networks of workstations and
grids. The initial tests have shown for both versions encouraging results.

2. Parallel Abstraction Layer (PAL)

We fully subscribe the opinion “...people know the application domain and
can better decompose the problem, compilers can better manage data depen-
dence and synchronization” [21]. Our approach to parallel grid programming
relies on programmer knowledge to “structure” the parallel schema of applica-
tion and then to the compiler/run time tool ability to efficiently implement the
parallel schema conceived by the programmer. The general idea is outlined in
Figure 1.

This is much in the sense of what’s being advocated in the algorithmic skele-
tons approach [9]. Actually, here we propose a general-purpose mechanism
that does not require complex application structuring by the programmer. In

Figure 1. PAL approach overview.
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Figure 2. Sample code using PAL.

fact the programmer is only required to insert, in the source code, some hints
that will be eventually exploited in the runtime support to implement efficient
parallel/distributed execution of the application code.

These hints may consist of non-functional requirements. As an example,
performance contracts (SLA, Efficiency, Price, Reliability, Resource const-
raints, Software, tools, standards, parallelism degree etc.) can be specified
through the annotation mechanisms provided by both Java and .NET [1].

Once the programmer has inserted the annotations in the source code, the
run time exploits the information conveyed in the annotations to implement a
parallel version of the program running on top of the target parallel/distributed
architecture.

The programmers are required to give some kind of “parallel structure” to
the code directly at the source code level, as it happens in the algorithmic
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skeleton case. However, the approach discussed in this work presents at least
three additional advantages.

First, annotations can be ignored and the semantics of the original se-
quential code is preserved. This means that the programmer application
code can be run through a classical compiler/interpreter suite and de-
bugged using normal debugging tools.

Second, annotations are processed at load time, typically exploiting re-
flection properties of the hosting language. As a consequence, while
handling annotations, a bunch of knowledge can be exploited which is
not available at compile time (kind of machines at hand, kind of inter-
connection network, etc.) and this can lead to more efficient parallel
implementations of the user application.

Third, the knowledge concerning the kind of target architecture can be
exploited leading to radically diverse implementation of the very same
user code. As an example, if the run time can figure out that the tar-
get architecture where the program is running happens to be a grid, it
can transform the code in such a way very coarse grain parallelism is
exploited. On the other hand, in case the run time figures out that user
asked to execute the code on a SMP target, a more efficient, possibly
finer grain, multithreaded version of the code can be produced as the
result of the annotation handling.

In order to experiment the feasibility of the proposed approach, we con-
sidered the languages that natively support code annotations. Both Java and
.NET frameworks provide an annotation mechanism. They also provide an in-
termediate language (IL) [32], portable among different computer architecture
(compile once – run everywhere), and holding some information typically only
available at source code level (e.g. code annotations) that can be used in the
runtime for optimization purposes.

The optimization we propose consists in the automatic restructuring of the
application in order to exploit the application parallelism with respect to pro-
grammer’s annotations (non-functional application requirements). The trans-
formation process is done at load time, that is at the time we have all the infor-
mation we need to optimize the restructuring process with respect to the avail-
able parallel tools and underlying resources. The code transformation works
at IL level thus it does not need that the application source code is sent on tar-
get architecture. Furthermore, IL transformation introduces in general fewer
overheads than the source code transformations followed by re-compilation.

More in detail, we designed a Parallel Abstraction Layer (PAL) filling the
gap between the traditional and the parallel programming metaphor. PAL is
a generative [24] metaprogramming engine, which gathers, at load time, all
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information on available parallel tools and computational resources. Then, it
analyzes the IL code looking for programmer annotations (non-functional re-
quirements) directly transforms the sequential IL code to the parallel code,
satisfying in the meanwhile the performance contracts supplied by the pro-
grammers through the annotations in the source code. The structure of the new
IL code depends on the selected parallel framework and on the presence and/or
value of some non-functional requirements.

PAL exploits the parallelism by asynchronously executing parts of the orig-
inal code. The parts to be executed asynchronously are individuated by the
user annotations. In particular, we used Java and therefore the more natural
choice was to individuate method calls as the parts to be asynchronously ex-
ecuted. PAL translates the IL codes of the “parallel” part by structuring them
as needed by the parallel tools/libraries available on the target architecture.
Asynchronous execution of method code is based on the concept of future [7–
8]. When a method is called asynchronously it immediately returns a future,
that is a stub “empty” object. The caller can then go on with its own com-
putations and use the future object just when the method call return value is
actually needed. If in the meanwhile the return value has already been com-
puted, the call to reify the future succeeds immediately, otherwise it blocks
until the actual return value is computed and then returns it.

PAL programmers must simply put a @Parallel annotation (possibly en-
riched with some other non-functional requirements, such as the required par-
allelism degree, as an example) on the line right before method declaration
to mark that method as a candidate for asynchronous execution. This allows
keeping applications similar to normal sequential applications, actually. Pro-
grammers may simply run the application through standard Java tools to verify
it is functionally correct. The PAL approach also avoids the proliferation of
source files and classes, as it works transforming IL code, but raises several
problems related to data sharing management. As an example, methods anno-
tated with a @Parallel cannot access class fields: they may only access their
own parameters and the local method variables. This is due to the impossibility
to intercept all the accesses to the class fields, actually. Then PAL autonomi-
cally performs at load time activities aimed at achieving the asynchronous and
parallel execution of the PAL-annotated methods and at managing any consis-
tency related problems, without any further programmer intervention.

3. A PAL prototype

We have implemented a PAL prototype in Java 1.5, as Java provides a
manageable intermediate language (Java byte-code [31]) and natively supports
code annotations, since version 1.5. Furthermore, it owns all the properties
needed by our approach (type safety, security, etc.). The prototype works
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taking the program byte-code as input and transforming it in a parallel or mul-
tithreaded byte-code (see Fig. 2). In order to do this it uses ASM [5]: a Java
byte-code manipulation framework.

The current prototype accepts only one kind of attribute to the @Parallel
annotation: a parDegree denoting the number of processing elements to be
used for the method execution. PAL uses such information to make a choice
between the multithreaded and distributed version. This choice is driven by
the number of processors/cores available on the host machine: if the machine
owns a sufficient number of processors the annotated byte-code directly com-
piled from user code is transformed in a semantically equivalent multithreaded
version. Otherwise PAL chooses to transform the compiled byte-code in a se-
mantically equivalent parallel version that uses several networked machines to
execute the program.

Concerning this second case, PAL only produces parallel code compliant
with the JJPF framework [11–12], at the moment. JJPF is a framework,
based on Jini Technology, designed to provide programmers with an environ-
ment supporting the execution of skeleton based parallel applications, provid-
ing fault-tolerance and load balancing. PAL basically transforms code in such
a way the user code relative to methods to be computed asynchronously is
embedded into some code suitable to be run on the remote JJPF servers dis-
placed onto the processing elements. Conversely, the main code invoking the
@Parallel methods is used to implement the “client” code, i.e. the applica-
tion the user runs on its own local machine. This application eventually will
interact with the remote JJPF servers according to proper JJPF mechanisms and
protocols. Method call parameters, the input data for the code to be executed
asynchronously, are packaged in a “task”. When a server receives a task to be
computed, it removes its server-descriptor from the processing elements avail-
able for JJPF. When the task computation is completed the server re-inserts its
descriptor from the available ones. In other words, when a annotated method
is called an empty future is immediately returned, a “task” is generated and it
is inserted into the JJPF queue; eventually it is sent to one of the available pro-
cessing element, which remove itself from the available resources, computes
the task and returns the result that JJPF finally put inside the proper future.
This implementation schema looks like very close to a classical master/slave
implementation.

We could have used any other parallel programming framework as the PAL
target. As an example, we could have used Globus toolkit. However, JJPF
was more compact and required a slightly more compact amount of code to
be targeted, with respect to the Globus or other grid middleware frameworks.
As the principles driving the generation of the parallel code are the same both
using JJPF and other grid middleware frameworks, we preferred JJPF to be
able to implement a proof-of-concept prototype in a short time.
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Current PAL prototype therefore accepts plain Java programs with methods
annotated as @Parallel and generates either multithreaded parallel code or
parallel code suitable for the execution on a network of workstations running
Java/JINI and JJPF. It has some limitations, however. In particular, the only
parameter passing semantics available for annotated methods is the deep-copy
one, and the current prototype does not allows to access the class fields from
inside the annotated methods.

In order to enable the PAL features, the programmer has only to add a few
lines of code. Figure 2 shows an example of PAL prototype usage, namely a pro-
gram computing the Mandelbrot set. The Mandelbrot class uses a @Parallel
annotation to state that all the createLines calls should be computed in par-
allel, with a parallelism degree equal to 16. Observe that, due to some Java
limitations (see below), the programmer must specify PFFuture as return type,
and consequently return an object of this type. PFFuture is a template defined
by the PAL framework. It represents a container needed to enable the future
mechanism. The type specified as argument is the original method return type.
Initially, we tried to have to a more transparent mechanism for the future imple-
mentation, without any explicit Future declaration. It consisted in the load-time
substitution of the return type with a PAL-type inheriting from the original one.
In our idea, the PAL-type would have filtered any original type dereferentia-
tion following the wait-by-necessity [6] semantics. Unfortunately, we had to
face two Java limitations that limit the current prototype to the current solu-
tion. These limitations regard the impossibility to extend some widely used
Java BCL classes (String, Integer,...) because they are declared final, and the
impossibility to intercept all class field accesses.

In theMain class, theuser just asks to transformtheMainand theMandelbrot
classes with PAL, that is, to process the relevant PAL annotations and to pro-
duce an executable IL which exploits parallelism according to the features (hw
and sw) of the target architecture where the Main itself is being run.

4. Experimental results

To validate our approach we ran some experiments with the current pro-
totype. We run tests were covering both cases: multithreaded and parallel
transformations. In the former case, we used, as test bed, a hyper-threading
bi-processors workstation (Intel Xeon 2Ghz, Linux kernel 2.6). In the latter
case, instead, we used a blade cluster (24 machines single PentiumIII-800Mhz
processor with multiple Fast Ethernet network, Linux kernel 2.4). For both
cases, our test application was a fractal image generator, which computes sec-
tions of the Mandelbrot set. We picked up Mandelbrot as it is a very popular
benchmark for embarrassingly parallel computation. PAL addresses exactly
these kinds of computations, as it only allows executing remotely methods not
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Figure 3. Mandelbrot computation: efficiency comparison with different image resolution,
processing element number and task computational weight.

accessing shared (static) variables nor having any kind of side effects. On the
one hand, this obviously represent a limitation, as PAL cannot compete, as an
example, with other approaches supporting plain loop parallelization. On the
other hand, a huge amount of embarrassingly parallel applications are executed
on clusters, workstation networks and grids. Most of times, the implementation
of these applications requires a significant programming effort, despite being
“easy” embarrassingly parallel, far more consistent than the effort required to
execute the same kind of application exploiting PAL.

To study in more detail the behavior of the transformed version in several
contexts, we ran the fractal generator setting different combinations of resolu-
tion (600x400, 1200x800, 2400x1600) and task computational weights, start-
ing from 1 up to 40 lines at time. Clearly when the task size (number of lines
to compute) increases, the total number of tasks decreases. The transformed
multithreaded version has been executed only with parDegree value equals to
1 or 2 (we used a bi-processor test bed). Nevertheless, the multithreaded ex-
periments achieved promising results, as the registered efficiency with parallel
degree 2 is about 1, for all the combination (resolution and compute lines).
Since in a multicore solution we have a lower communication impact than in
a COW or grid solution, we can point out that this performance should be eas-
ily maintained with symmetric multiprocessors with even larger (multicore)
processing elements.



92 Achievements in European Research on Grid Systems

When the very same source code is used on a distributed workstation net-
work with JJPF we achieved performances definitely close to the ones we
achieved with hand written JJPF code (see Fig. 3), instead. The Figure shows
the result of the experiments with an image resolution of 2400x1600 (other
results obtained using different image resolutions are comparable) when a dif-
ferent number of processing elements are used (i.e. when different values were
passed to the @Parallel(parDegree=...) annotation).

These results demonstrate that PAL performance strictly depends on the par-
allel tool targeted by the PAL IL transformation techniques. Actually, the
overhead introduced by PAL is negligible. Nevertheless, an overhead exists
because PAL offers to programmers a general metaphor that is not specialized
with respect to the parallel tool used at runtime.

5. Related work

PAL offers a simple yet expressive technique for parallel programming. Ex-
ploiting “runtime compilation” it adapts the executable code to different ar-
chitectures, such as shared memory multiprocessors and networked multicom-
puters. It does not introduce a new or different paradigm, while exploiting
parallelism at the method call level. We found in the literature a certain num-
ber of systems with similar ideas. However, although different experiments
exist in the so-called concurrent object-oriented languages scenario (COOLs)
[29], we decided to discuss only those actually very similar to PAL.

In [23] the authors propose a Java version of OpenMP giving to the program-
mers the possibility to specify some PRAGMAs inside comments to source
code. These pragmas are eventually used by a specific java HPC compiler to
transform the original program in a different one exploiting parallelism, for
instance through loop-parallelization. There are three important differences
between this approach and the ours one: first of all PAL works at method
level making method invocations asynchronous, while the work presented by
Klemm et al. mainly works at the loop-parallelization level. Another very
important difference is related to the moment in which the transformation is
made: this approach works at compile time starting from source-code, while
PAL directly transforms the byte-code at load and run time. As a consequence,
PAL may optimize its transformation choices exploiting the knowledge avail-
able on the features of the computing resources of the target execution plat-
form. Eventually, PAL uses java Annotations to enrich the source code, instead
the Java version of OpenMP uses the source code comments. The former ap-
proach exploits Java basic features, in particular annotations, which type and
syntax are checked by compiler, with the limitation that annotations cannot
be placed everywhere in the source code. the latter solution instead is more
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“artificial” but it is not limited to classes, methods and class fields (as the java
Annotations) and it can be also applied to pure Java code blocks.

If we limit the discussion to the approaches that transform a sequential
object-oriented program into a concurrent one by replacing method invoca-
tions with asynchronous calls, (where parallelism can be easily extracted from
sequential code without modification, without changing the sequential seman-
tics and the wait for return values can be postponed to the next usage, even-
tually using future objects) the number of approaches similar to PAL is small.
However, some other approaches share single points/features with our PAL
approach.

Java made popular the remote method invocation (RMI) for interaction be-
tween objects in disjoint memories. The same properties that apply for paral-
lelizing sequential local calls apply for remote ones, with the advantage that
remote calls do not rely on shared memory. Parallelizing RMIs scales much
better than local calls, as the number of local processors does not limit the
number of parallel tasks. This led to many implementations of asynchronous
RMIs. ProActive is a popular object oriented distributed programming envi-
ronment supporting asynchronous RMIs [16]. It offers a primitive class that
should be extended to create remote callable active objects, as well as a run-
time system to remotely instantiate this type of objects. Any call to an active
object is done asynchronously, and values are returned using future objects.
Compilation is completely standard, but instantiation must be done supplying
the new object location. All active objects must descend from the primitive
active object class, so existing code must be completely encapsulated to be-
come active, as there is no multiple inheritance in Java. Although concurrency
is available through asynchronous calls, scalable parallelism is obtained creat-
ing several distributed objects, instead of calling several concurrent methods,
which is not always a natural way of structuring the parallelism.

Some other systems, at different levels, offer asynchronous remote method
calls, like JavaParty [30] and Ibis [33]. They provide a lower level of abstrac-
tion with respect to PAL, being more concerned with the performance of RMI
and efficient implementation of asynchronous mechanisms. Usually they offer
a good replacement for the original RMI system, either simplifying object dec-
laration or speeding up the communication. Both rely on specific compilers
to generate code, although Ibis generate standard JVM byte-code that could
therefore be executed on any standard JVM.

6. Conclusion and future work

We propose a new technique for high level parallel programming based on
the introduction of a Parallel Abstraction Layer (PAL). PAL doesn’t intro-
duce a new parallel programming model, but actually exploits the programmer
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knowledge provided through annotations to restructure the application once
the available target parallel framework is known. The restructuring process
is driven by the analysis of the non-functional requirements introduced with
code annotations. This process is executed at load time directly at intermediate
language level. This allows obtaining and to exploit at the right time all the
information needed to parallelize the applications with respect to the parallel
tools available on the target execution environment and to the user supplied
non-functional requirements. A load time transformation allows hiding most
of parallelization issues.

We developed a PAL Java prototype and we used it to perform some experi-
ments. The results are very encouraging and show that the overhead introduced
by PAL is negligible, while keeping the programmer effort to parallelize the
code negligible. Nevertheless, the current prototype has some limitations. The
non-functional requirements are limited to the possibility to indicate the par-
allelism degree, the parameter passing semantic to PAL-annotated method is
limited to deep-copy and the class fields are not accessible from PAL-annotated
methods. Eventually, the programmer has to include an explicit dereferentia-
tion of objects returned by PAL-annotated methods.

We are currently investigating other possibilities, in order to complete the
PAL design. In particular, we are considering to support distributed field access
from inside PAL-annotated methods as well as to provide a larger choice of
parameter passing semantics in PAL-annotated method, which is fundamental
to provide a larger programming freedom. In the near future we also want to
increment the set of available non-functional requirements that can be specified
inside @Parallel annotation, and to add PAL the ability to generate code for
different parallel frameworks, including plain Globus grids. Last but not least,
we’re interested to merge the PAL experience with similar research performed
at our Dept. by other people in the .NET (Mono [28]) framework [14].



PAL: Exploiting Java Annotations for Parallelism 95

References
[1] Java specification requests 175: A metadata facility for the java programming language.

http://www.jcp.org, September 2004.

[2] Mpi: A message-passing interface strandard. http://www.mpi-forum.org, 1994.

[3] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST Grid-aware
components. In Euromicro PDP 2006: Parallel Distributed and network-based Process-
ing. IEEE, February 2006. Montbéliard, France.

[4] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-Cummings Publish-
ing Co., Inc., Redwood City, CA, USA, 1989.

[5] C. T. Bruneton E, Lenglet R. Asm: a code manipulation tool to implement adaptable
systems, grenoble, france. Adaptable and Extensible Component Systems, Nov. 2002.

[6] D. Caromel. Service, asynchrony, and wait-by-necessity. Journal of Object-Oriented
Programming, Nov/Dec 1989.

[7] D. Caromel and L. Henrio. A Theory of Distributed Object. Springer-Verlag, 2005.

[8] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects, 2004.

[9] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Par-
allel Programming. Parallel Computing, Volume 30, Number 3, pages 389–406, 2004.

[10] Programming model Institute home page, 2006.
http://www.coregrid.net/mambo/content/ category/3/13/261/.

[11] M. Danelutto and P. Dazzi. A java/jini framework supporting stream parallel computa-
tions. In Proc. of Intl. PARCO 2005: Parallel Computing, September 2005.

[12] P. Dazzi. Jjpf: a parallel programming framework based on jini. Master’s thesis, Univer-
sity of Pisa, July 2004. JJPF: uno strumento per calcolo parallelo con JINI.

[13] N. DiPasquale, T. Way, and V. Gehlot. Comparative survey of approaches to automatic
parallelization. In MASPLAS’05, April 2005.

[14] C. Dittamo. Annotation based techniques for the parallelization of sequential programs
(in Italian), July 2006. Graduation thesis, Dept. Computer Science, Univ. of Pisa.

[15] J. Dünnweber and S. Gorlatch. Component-based Grid Programming using the HOC-
Service Architecture. In I. H. Fujita, editor, New Trends in Software Methodologies,
Tools and Techniques, Frontiers in Artificial Intelligence and Applications. IOS Press,
2005. ISBN 1-58603-556-8.

[16] D. C. et al. Proactive. http://proactive.objectweb.org, 1999.

[17] K. J. et al. Future for European Grids: GRIDs and Service Oriented Knowledge Utili-
ties, January 2006. Third report of the Next Generation Grids expert group, available at
http://cordis.europa.eu/ ist/ grids/ pub-report.htm.

[18] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kauffman, 1999.

[19] GGF RPC WG home page, 2006. https://forge.gridforum.org/projects/gridrpc-wg/.

[20] MPICH-G2 home page, 2006. http://www3.niu.edu/mpi/.

[21] A. S. Grimshaw. The mentat computation model data-driven support for object-oriented
parallel processing. Technical report, Dept. Comp. Science, Univ. Virginia, 28 1993.

[22] E. N. G. G. E. Group. Next Generation Grids 2 Requirements and Options for European
Grids Research 2005-2010 and Beyond, July 2004. ftp://ftp.cordis.europa.eu/ pub/ ist/
docs/ ngg2 eg final.pdf.



96 Achievements in European Research on Grid Systems

[23] M. Klemm, R. Veldema, M. Bezold, and M. Philippsen. A proposal for openmp for java.
In Proceedings of the International Workshop on OpenMP, June 2006.

[24] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming - Methods,
Tools, and Applications. Addison–Wesley, June 2000.

[25] L. Henrio et al. . Proposals for a Grid Component Model. Technical Report D.PM.02,
CoreGRID, December 2005.

[26] Y. Nakajima, M. Sato, T. Boku, D. Takahashi, and H. Goto. Performance Evaluation of
OmniRPC in a Grid Environment. In Proc. of SAINT2004, Workshop on High Perfor-
mance Grid Computing and Networking, pages 658–664, January 2004.

[27] Ninf: A Global Computing Infrastructure, 2006. http://ninf.apgrid.org/.

[28] Novell. Mono project. http://www.mono-project.com/, 2005.

[29] M. Philippsen. A survey of concurrent object-oriented languages. Concurrency: Practice
and Experience, Volume 12, Number 10, pages 917–980, 2000.

[30] M. Philippsen and M. Zenger. JavaParty – transparent remote objects in Java. Concur-
rency: Practice and Experience, Volume 9, Number 11, pages 1225–1242, Nov. 1997.

[31] F. Y. Tim Lindholm. The Java Virtual Machine Specification. Sun Microsystems Press,
second edition edition, 2004.

[32] S. Tse. Typed intermediate languages. Technical report, Dept. Comp. Science, University
of Pennsylvania, 2004.

[33] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,
and H. E. Bal. Ibis: a flexible and efficient java-based grid programming environment.
Concurrency and Computation: Practice & Experience, Volume 17, Number 7-8, pages
1079–1107, 2005.



A NEW APPROACH ON NETWORK
RESOURCES MANAGEMENT IN GRIDS∗

Ranieri Baraglia, Domenico Laforenza, Renato Ferrini,
Nicola Tonellotto
Information Science and Technologies Institute, CNR, 56126 Pisa, Italy

ranieri.baraglia@isti.cnr.it, domenico.laforenza@isti.cnr.it, renato.ferrini@isti.cnr.it,

nicola.tonellotto@isti.cnr.it

Davide Adami†, Stefano Giordano
Department of Information Engineering, University of Pisa, 56100 Pisa, Italy
†CNIT Research Unit, Dept of Information Engineering, University of Pisa

davide.adami@cnit.it, s.giordano@iet.unipi.it

Ramin Yahyapour
Robotics Research Institute, University of Dortmund, 44221 Dortmund, Germany

ramin.yahyapour@udo.edu

Abstract Currently, Grid applications are usually developed for a network offering only a
best effort packet delivery service. Nevertheless, High Performance Computing
applications with Quality of Service requirements stress the capabilities of the
interconnecting network of the target Grid infrastructure. Therefore, the appli-
cation runtime environment must interact, through a Grid Resource Broker, with
a Network Resource Manager to obtain information about the network and to
reserve network resources among the computational resources that will host the
execution of the applications.

The paper presents the design and the development of a Grid Network-Aware
Resource Broker. It enhances the features of a Grid Resource Broker with the
capabilities provided by a Network Resource Manager. The innovative contribu-
tion of the presented integration is the possibility to design and implement new
mapping/scheduling mechanisms to take into account both network and compu-
tational resources. Finally, we will show how to exploit the new features offered
by the Grid Network-Aware Resource Broker in scheduling parallel applications
with QoS requirements.

Keywords: Grid Computing, High-level Programming Environment, Resource Management,
Quality of Service, MPLS, DiffServ

∗This work has been supported by: the Italian MIUR FIRB Grid.it project, No. RBNE01KNFP, on High-
performance Grid platforms and tools, and the European CoreGRID NoE (contract no. IST-2002-004265).



98 Achievements in European Research on Grid Systems

1. Introduction

The Grid is a promising infrastructure that can allow scientists and engi-
neers to access a distributed heterogeneous computing environment in a secure
and uniform way. Currently, research is focused on the abstraction of the un-
derlying physical resources and their cooperation. Meanwhile, to guarantee
high-level programming capabilities, software interoperability and reuse, as
well as the ability to follow the evolution of the underlying technologies, new
application Programming Environments are required. The complete unaware-
ness of users and programmers of the Grid management leads to the concept of
the Invisible Grid, a virtual “supercomputer” whose resources can be allocated
to the applications “automatically”.

To enforce this vision, a layered approach is needed. The programmer de-
velops applications exploiting high-level interfaces exposed by the Grid Pro-
gramming Environment. Then applications are compiled and linked with an
Application Manager that must take care of interactions with the Grid mid-
dleware. The middleware provides several services including functionalities
that directly interact with the management of physical resources. This man-
agement is related to dynamic resource allocations for the given application
needs at launch time and during runtime. By exploiting structured approaches
to parallel programming (i.e. skeleton libraries and programming languages [1,
3, 4, 2]) and component-based technologies, it is possible to recursively build
parallel applications comprising a large number of interacting modules. Us-
ing a structured model to develop Grid applications makes possible to specify
the computational and network requirements that the run-time target platform
must satisfy. This information can be obtained from a smaller set of user-
defined QoS requirements. Before starting the execution, the Resource Man-
agement System must exploit this data to discover adequate computational and
network resources, reserving and configuring them if necessary. This process
must be carried out orchestrating the interactions between several Grid Mid-
dleware Services.

Up to now, several efforts have been carried out to coordinate the interaction
between computational and storage resources only. However, also the network
places a central role in the execution of complex tightly coupled applications,
involving both the transfer of big amount of data and the interaction between
different application modules. Both computational and network resources are
shared between several users, generally with local administrative policies, and
without guarantees about the features of the connections. Scientific applica-
tions usually rely on the availability of appropriate computational capabilities,
where appropriate means that each operation must be executed according to
a service performance contract. When an application consists of several in-
terconnected modules, every single module must satisfy some performance
requirements to obtain the desired user-dependent QoS. The interconnection
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mechanism between application modules may sustain the communications be-
tween them. When the information exchange between these application mod-
ules may affect the overall performance, network connections with guaranteed
Quality of Service (QoS) are necessary to satisfy the application performance
constraints.

In this work, we focus on the integration between computational and net-
work resources managers to enforce QoS on the execution of parallel appli-
cations. In Sect. 2 and 3 we present, respectively, the design and the im-
plementation of a Grid Resource Broker and a Network Resource Manager.
Sect. 4 proposes an approach to the problem of orchestrating the interaction
between computational and network resources exploiting our managers imple-
mentations. In Sect. 5 we show some results in the management of parallel
applications with QoS requirements, and in Sect. 6 we draw our conlusions
and outline future research directions.

2. Grid Resource Broker

A large class of HPC applications can be modelled through Task Interaction
Graphs (TIGs) [9]. A weighted Task Interaction Grap may be adopted to model
a parallel application. The nodes represent computations and are characterised
by a computational bandwidth (MFlop/s). The edges represent data communi-
cations and are characterised by a transmission bandwidth. Such bandwidths
can be obtained either by static program analysis or by executing the code on
a reference system. During the execution of the application, the nodes and
the edges continuously receive, elaborate and send data, with different band-
widths. Suitable resources must be selected and managed to provide a certain
level of performance to the application, i.e. to support the minimum bandwidth
requirements of the nodes and edges.

The Grid Execution Agent (GEA) [11] has been designed and implemented
to act as the Grid Resource Broker of the Grid.it Project [13]. Currently,
it implements several components to manage Globus based Grids as well as
collections of resources accessible through SSH. It partially exploits the CoG
Kits [10] and only manages computational resources, providing the following
features: management of security mechanisms, resource discovery, resource
selection and mapping, data staging, execution of the modules of the applica-
tion.

The input of the brokering process is a description of the application; this
description is coded in an XML format, called Application Level Description
Language, which identifies the processes constituting the application with as-
sociated resource requirements. Moreover, this document includes the TIG of
the application with the bandwidth requirements.

This description is parsed and checked and an internal representation of the
application is built. The next step is the formulation of a query for the resources
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independent of the specific Information Services (which will be queried). A
query can contain simple resource requirements as well as specific require-
ments on the aggregate characteristics of a set of resources. When the query
has been created, the resources search procedure starts, interacting directly
with different Grid middlewares. The current implementation of GEA permits
to interact in parallel with custom Information Services, Globus Monitoring
and Discovery Services and the Network Weather Service.

At the end of the resource discovery phase, a Grid Virtual Representation is
built. This representation encapsulates a logical view of the Grid resources ful-
filling the submitted query. During the mapping phase, an allocation of the ap-
plication processes to the resources is calculated. This problem is complex, so
some heuristics must be used. We introduced some constraints to simplify the
problem: every single resource contributes with its full computational power
to the execution of the application, and the inbound/outbound bandwidth of the
resource sustains the application traffic. In this way, it is possible to identify
the resources able to support the required computations, then we are able to de-
rive the QoS that the network interconnecting several resources must provide.
After the mapping phase, there is the actual execution of the application. The
first step in this phase is to build an abstract representation of the tasks to be
performed: stage in, activation, (possibly coallocated) execution and stage out.
These tasks are organized in an abstract workflow exploiting the information
provided by the application description. The information derived in the map-
ping phase is used to translate the workflow in a concrete representation of the
tasks. This representation contains every detail needed to automatically enact
the workflow and start the execution of the application.

3. Network Resource Manager and Information Services

The cooperation of the network infrastructure and the Application Manager
requires the design and the development of a new Grid Middleware Service,
called Network Resource Manager (NRM), which can be invoked by the Ap-
plication Manager through the Resource Management functionality. In this
framework, the NRM has an interface to request a pre-defined network ser-
vice and may include several modules to optimize the utilization of network
resources. A Network Information System (NIS) is also necessary to collect
information about the network status and to control service agreements. Since
these components are essential to achieve a Grid network-aware environment,
our approach is based on a centralized architecture where a new entity, the
Grid Network Resource Broker (GNRB), provides both NRM and Network
Information System (NIS) functionalities (see Fig. 1).

The GNRB architecture consists of a Network Resource Management Sys-
tem (NRMS) and a Network Configuration Management System (NCMS).
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Figure 1. GNRB architecture and Multi-Point Real-Time Network Measurement System.

3.1 Network Resource Management System

The NRMS performs policy and admission control, path computation and
network resource scheduling functions as described in [7]. When a network
service request is delivered to the GNRB, the Policy and Admission Control
module checks if the user is allowed to ask for the service. Then, the compliance
of the request with the Service Level Agreement (SLA) established between the
Network Provider and the Virtual Organization is verified. The next operation
is performed by the Path Computation Element (PCE), which determines if the
new incoming service request may be accepted, must be rejected or reclassified.
The PCE executes a path computation algorithm (e.g. Shortest Path First with
Multiple Constraints algorithm) over a graph, representing the network topol-
ogy, whose edges are weighted according to the required performance metrics.
The structure of the graph and the weights assigned to each edge are deter-
mined through information stored in the Network Information Storage System
(NISS). The main modules of the NISS are the data collection module, which
allows asynchronous exchanges of information between the NISS and the Multi-
Point Real-Time Network Measurement Systems, and the data organization
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modules, where status information is organized hierarchically, in compliance
with the entity.characteristic.subcharacteristic representation [6].
The network information storage database contains statistics concerning the sta-
tus of the network at path, link and node levels.

3.2 Network Configuration Management System

This module performs network nodes configuration (i.e. Label Switched
Path, LSP, set up and tear down, traffic control parameters setting, MPLS-
based recovery configuration, etc.) when they are necessary to meet the net-
work requirements of grid applications. The NRMS sends to the NCMS all the
information concerning the configuration to apply to the network devices. The
NCMS applies the configuration statements to each network device by using,
for each of them, specific tools (e.g. JunOScript for Juniper routers).

3.3 GNRB and Multi-Point Real-Time Network
Monitoring System

The GNRB interfaces through the Inter-Working APIs with the Multi-Point
Real-Time Network Monitoring System, which allows to monitor the network
status and the available network resources. Different Multi-Point Real-Time
Monitoring Systems modules may be deployed to collect information about
the network, such as physical and logical (i.e. MPLS, IP) topologies, perfor-
mance metrics (e.g. link utilization, throughput, end-to-end delay, jitter, etc.),
performance of recovery mechanisms, etc [12].

Network status data, both static and dynamic, has to be reported to the
GNRB through an Inter-Working API. Subsequently, network performance pa-
rameters must be evaluated and stored into the NISS database in a preliminary
phase when the network infrastructure is set up. The knowledge of the phys-
ical and IP configuration information enables the topology discovery and re-
quires a protocol to exchange information with network devices. Moreover, to
deliver real-time metrics reports to the GNRB, ad-hoc measurement systems
have to be deployed. For example, a network bandwidth probe might rely upon
SNMP-enabled network devices, such as routers and switches.

At the end, network performance may be evaluated through experiments in
the real network scenario and simulations carried out to achieve the bounds of
the network performance metrics.

4. Network-aware Grid Resource Broker

Concerning Grid network services use cases, two areas have been identi-
fied [5]: (i) Path-Oriented, including a number of network services which aims
at the usage of different types of network connectivity; (ii) Knowledge-Based,



A New Approach on Network Resources Management in Grids 103

including all the network services concerning the collection and usage of net-
work performance information.

When the network architecture is also considered, Grid network services
must be mapped into Service Level Specifications (SLSs), which may consist
of expected throughput, drop probability, latency, constraints on the ingress
and egress points at which the service is provided, traffic profiles, disposition
of traffic submitted in excess of the specified profile, and marking and shaping
services provided.

In our implementation, the Grid Resource Broker and the Network Resource
Manager are implemented through the GEA and the GNRB, respectively. In
the GNRB architecture, the network services that the Grid Resource Broker
can request are the following:

Network Topology, with information about network performance met-
rics (link available bandwidth, link delay, etc.) In this case, the GEA may
choose the computational resources taking also into account the network
status. Anyway, the network only provides a Best Effort service without
any performance guarantees.

Weighted Topology: i.e. the best network paths calculated according
to a predefined network metric, which assure the connectivity among
the Grid application nodes. In particular, when the GNRB receives a
weighted topology discovery query, the NRMS retrieves the information
on the network resources status from the NIS database, and determines
the paths satisfying the query through the execution of the path compu-
tation algorithm.

QoS Support: i.e. a set of network paths among the Grid application
nodes, satisfying specific QoS constraints (Peak Rate and Burst Size,
Mean Rate and Burst Size, Maximum Latency, Mean Latency) for the
whole execution time of the application. Therefore, it can be neces-
sary to reserve on-demand network resources to satisfy the application
requirements or to reject the request if there are not enough available
resources.

In our architecture, the SLS Signalling Protocol is used by the GNRB and
the Application Manager to exchange query/response messages formatted by
using XML-based schemes. Fig. 2 shows an example of two QoS Support
service requests, for EF (Peak Rate and Burst Size) and AF (Average rate and
Burst Size) services, respectively.

In the GEA architecture, several assumptions about the computational re-
sources have been done. The GEA mainly targets the execution of HPC appli-
cations. These applications are commonly executed on computing resources
that are part of a Grid composed by several scientific research labs (HPC
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<requestedMapping>
<id>1</id>
<service>EF</service>
<componentPath>
<srcLan entryRouter="10.0.0.1">

100.2.255.23/19
</srcLan>
<dstLan entryRouter="10.0.0.2">

255.243.23.11/31
</dstLan>
<requestedBandwidth>

<peak>10</peak>
<burst>10</burst>

</requestedBandwidth>
</componentPath>

</requestedMapping>

<requestedMapping>
<id>2</id>
<service>AF</service>
<componentPath>

<srcLan entryRouter="10.0.0.1">
192.168.1.0/24

</srcLan>
<dstLan entryRouter="10.0.0.2">
10.0.0.1/16

</dstLan>
<requestedBandwidth>
<mean>100</mean>
<burst>10</burst>

</requestedBandwidth>
</componentPath>

</requestedMapping>

Figure 2. Example of two QoS Support service requests.

Grids). In this scenario, it is possible to make some assumptions about com-
putational resources and Local Area Networks. Usually, the shared resources
are clusters of computers or computers connected either to switched LANs
that can be seen as clusters. While the computing resources of a cluster are
(almost) homogeneous, the clusters are heterogeneous. The computing re-
sources of a cluster share a dedicated Local Area Network. We assume that
the selected computing resources in a cluster contribute with their full compu-
tational power to the execution of an application, and the LAN bandwidth is
fairly distributed between the computing resources and the background traffic
does not exist. With these assumptions, it is clear that potential bottlenecks
are the links between the LANs relative to each cluster participating in the
execution. The interconnection link share the same backbone network used
by normal users of the scientific labs. Then, the Network Resource Manager
must enforce LSPs between the Edge Label Switching Routers (E-LSRs) of
the backbone. The scheduling process performed by the Grid Resource Broker
is depicted in Fig. 3.

The scheduling process starts with the description of the application. The
description includes the weighted TIG of the application, where the vertex and
edge weights represent respectively computational and communication band-
widths, as well as architectural constraints such as target CPUs, minimum
memory/hard disk requirements, available libraries, operating systems. Next,
application nodes are clustered in order to minimize the scattering of the nodes
on several LANs. Then the GEA will start to query the Grid Information Ser-
vice to collect information about the available resources and select resources
able to fulfil the requirements of the single nodes of the application. While
resources are discovered, their static topology is build in a dendrogram. It is a
tree graph wherer the single resources are the leaves, and resources in the same
LAN/cluster, share the same parent node. All such parent nodes can be seen as
representatives of the LAN/cluster, and may be grouped again in MANs and
WANs.
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Figure 3. Scheduling Process.

Resource discovery, selection and application clustering phases can be it-
erated several times to find a solution. At the end of the application cluster-
ing phase, we are able to find several mappings of the application nodes to
available computing resources. Then, resources are grouped in LANs and the
cumulative bandwidth requirements between LANs can be arranged in new
graphs, one for each solution. Through the NISS, the E-LSRs interconnecting
the LANs are identified, and an XML query is submitted to the NRM. This
query includes the list of solutions found with inter-LAN bandwidth require-
ments, i.e. mean bandwidth, peak bandwidth and burst size. The GNRB will
check the status of network resources and, if possible, select one of the solu-
tions listed in the query. Next, the GEA requests the allocation and reservation
of the required LSPs between the LANs returned from the GNRB and, if this
phase is successful, starts the execution of the application, which will run over
the backbone with guarantees of network services.

5. Experimental Evaluation

In this section we will show how it is possible to apply the proposed schedul-
ing strategy proposed. In particular, a real application will be clustered and
mapped on the resource of the Grid.it testbed. The details of the scheduling
algorithm are outside the scope of this paper. Basically, the algorithm tries to
schedule the nodes of the application on the Grid resources trying to guarantee
a QoS level to the whole application. When many scheduling solutions are
available, the one which mimimizes the intra-LAN communication is selected.

The testbed used to evaluate the algorithm is a Grid composed by 23 hetero-
geneous computational resources (7 workstations and 2 clusters), distributed in
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three LANs connected through 1Gb/s optical links. Fig. 4 shows the structure
and the node/edge bandwidths of a rendering application, structured accord-
ing to the pipeline of farms programming paradigm, used in the experimental
evaluation. The first sequential stage requests the rendering of a sequence of
scenes. The second one is a data-parallel module composed by an emitter, a
collector and five workers that render each scene (exploiting the PovRay ren-
dering engine). The third stage collects images rendered by the second one, and
builds Groups Of Pictures (GOPs) that are sent to the fourth stage performing
DivX compression in a data-parallel module composed by two workers. The
last stage collects DivX compressed pieces and stores them in an AVI output
file. Computational and transmission values have been collected through a
short profiling execution of the application on a reference architecture.

Figure 4. A parallel renderer/encoder used during the tests.

A critical point of the scheduling algorithm is the clustering mechanism
used to aggregate the application nodes. Several heuristics can be used; in these
tests we used the one presented in [8]. By tuning the clustering parameters, it is
possible to obtain several clustering solutions. During the scheduling phases,
the resources to execute the modules of the applications are selected. Such
selection is based on a two-levels best fit list scheduling. We first selected the
best LAN to host a subset of modules (i.e. a cluster), and then the modules are
scheduled on such LAN. The resulting inter-LAN communication values are
influenced by two effects:

1 a single cluster may be too “large” to be scheduled on a single LAN, and
it must be split across several LANs. It happens with few and big clus-
ters, and this effect worsen the final inter-LAN communication value;

2 several clusters may be scheduled on the same LAN, if there are avail-
able resources, improving the final inter-LAN communication value.
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Inter LAN Inter LAN
LAN LAN LAN Average Comm. Comm.

MCR ISTI CNIT IET Affinity (clustering) (scheduling)
50 14 0 0 13.35 0.00%

3 clusters 100 14 0 0 5.63 0.12% 0.00%
150 8 1 5 4.32 20.81%
50 14 0 0 13.93 0.00%

5 clusters 100 14 0 0 6.72 3.98% 0.00%
150 6 1 7 4.48 24.48%
50 14 0 0 14.75 0.00%

10 clusters 100 14 0 0 7.00 30.27% 0.00%
150 9 1 4 4.82 26.04%

Figure 5. Inter-LAN communications with different cluster sizes and QoS requirements.

In Fig. 5 we can see that increasing the number of clusters causes an in-
crement in the inter-LAN communications (more clusters, more edges on the
cuts). This is a kind of optimality parameter for the results of the schedul-
ing phase. In fact, let us consider the clustering result as the best one for
the application. If the scheduling phase is able to schedule every single cluster
completely onto a single LAN, eventually we cannot obtain an inter-LAN com-
munication value worse than the previous one. In the case of three clusters, the
scheduling algorithm is forced to split the big cluster in several LANs, while in
the case of ten clusters, the heuristics is able to completely allocate the largest
cluster on a LAN and to allocate several small clusters on the same LANs.

6. Conclusion

The paper presents a new architecture for a Grid Resource Broker. This ar-
chitecture addresses the issues related to the performance of HPC applications
taking into account advanced network infrastructure offering QoS support and
Traffic Engineering capabilities.

In particular the proposed implementation allows to automatically prepare
and launch Grid applications, taking care of all the details needed to inter-
face the middleware such as resource discovery and selection, data staging,
interaction with local resource managers. To this purpose a new network en-
tity has been introduced: the Grid Network Resource Broker allows to request
information about the network status and, if necessary, can reserve network
resources to satisfy the QoS requirements of applications. Finally, a new map-
ping/scheduling mechanism exploiting these features has been discussed.
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1. Introduction

As grid technologies are becoming widely available, managing the com-
plexity of building and evolving grid applications is becoming increasingly
important. A promising approach to addressing this concern is component-
based development, which is currently attracting growing interest in the grid
community. This is evidenced by the emergence of component models explic-
itly targeting the Grid, such as CCA (Common Component Architecture) [9],
and GCM (Grid Gomponent Model) [10], currently under development within
the CoreGRID European project. Perceived benefits of component-based de-
velopment include reduced costs through reusing off-the-self components and
increased adaptability through adding, removing, or replacing components.
In evaluating the actual usefulness of component-based methods and models,
real-word experience with building grid applications is invaluable.

This work presents our experience with applying component-based devel-
opment to the domain of high performance scientific applications running on
the Grid. Specifically, we describe how a numerical solver, originally imple-
mented as distributed object application, was reengineered into a component-
based grid application. The reengineering effort was based on a general com-
ponentisation process and a grid-enabled component model. The model ex-
tends the generic Fractal component model [7], similarly to the GCM, and it
is implemented on top of the ProActive middleware [17]. We show that com-
ponentisation has increased the modifiability of the application without any
significant negative effects on performance.

The rest of this paper is structured as follows. Section 2 provides back-
ground on the numerical application, called Jem3D, and section 3 presents our
approach to reengineering this application. Section 4 then describes our com-
ponentisation experience and the resulting system. Section 5 provides some
performance results, and section 6 discusses related work. Finally, section 7
concludes the paper.

2. Background on Jem3D

This section provides background on Jem3D, the application at the focus of
this paper, and the ProActive library, the distributed object platform used by
Jem3D.

2.1 The ProActive library

The ProActive library is a Java middleware for parallel, distributed, and con-
current programming [17]. The programming model relies on remotely acces-
sible active objects communicating through asynchronous method calls with
transparent futures. Two key features of ProActive are its support for typed



Componentising a Scientific Application for the Grid 111

group communication and descriptor-based deployment. Group communica-
tion enables triggering method calls on a group of active objects with compati-
ble type, dynamically generating a group of results. This feature simplifies the
implementation and enhances the efficiency of applications that contain similar
activities running in parallel. Descriptor-based deployment enables deploying
distributed applications anywhere without having to modify the source code.
This is achieved by eliminating from the source code infrastructure details such
as machine names and creation protocols and specifying them separately in
XML descriptor files.

2.2 Jem3D overview

Jem3D is a numerical solver for the 3D Maxwell’s equations modelling the
time domain propagation of electromagnetic waves [4]. It relies on a finite
volume approximation method operating on unstructured tetrahedral meshes.
The complexity of the calculation is controlled by setting the mesh size; i.e.,
the triplet (m1×m2×m3) that specifies the number of points on the x, y, and z
axes used for building the tetrahedral mesh. Parallelisation relies on dividing
the computational domain into subdomains; the domain division is controlled
by another triplet (d1×d2×d3) that determines the number of subdomains on
each axis.

Figure 1 shows the runtime structure of Jem3D assuming a 2×2×1 domain
division. The main elements of the architecture are outlined next. Subdomains
correspond to partitions of the 3D computational domain; they perform elec-
tromagnetic computations and communicate with their closest neighbours in
the 3D grid. Moreover, they send partial solutions with a predefined frequency
to the main collector. The main collector is responsible for monitoring and
steering the computation by interacting with the subdomains. The monitoring
and steering functionality is used by one or more steering agents, dynamically
registered with the main collector. The application includes a command-line
agent and a graphical agent with visualisation capabilities. Steering agents
communicate with each other to ensure that only a single agent at a time has
the right to control the computation. Finally, the launcher is responsible for ob-
taining the input data, creating the main collector and the subdomains, setting
up the necessary connections between them, initialising them with the neces-
sary information, and starting the computation. Communication between the
entities relies on the asynchronous remote invocation and group communica-
tion mechanisms provided by ProActive.

The original Jem3D application suffers from limited modifiability and lim-
ited reusability of its parts. This can be largely attributed to two factors.
First, the application lacks reliable architectural documentation, which is es-
sential for understanding and evolving complex software systems. Jem3D has



112 Achievements in European Research on Grid Systems

Figure 1. Jem3D Architecture.

been subjected to successive changes by multiple people without correspond-
ing updates to the architectural information. Second, the application parts are
tightly coupled together. Indeed, as in most object-oriented applications, the
code includes hard-wired dependencies to classes, which limits the reusability
of classes, increases the impact of changes, and inhibits run-time variability.
For example, changing the subdomain implementation requires updating the
source code of both the main collector and the launcher and rebuilding the
whole application. As another example, although the Jem3D parallelisation
follows a typical geometric decomposition pattern [15], no part of the applica-
tion can be reused in other contexts where this pattern is applicable. To address
such modifiability and reusability limitations, Jem3D was re-engineered into a
component-based system.

3. Approach

Our approach to addressing the modifiability and reusability limitations of
Jem3D has two ingredients: a general, architecture-based componentisation
process, and the Fractal/ProActive component model. These ingredients are
discussed in turn next.
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3.1 Componentisation process

The purpose of the componentisation process is to transform an object-based
system to a component-based system. This process assumes that the target
component platform allows connecting components via provided and required
interfaces, and that it minimally supports (or, it can be extended to support)
the same communication styles as the object platform (e.g., remote method
invocation, streams, events). The main activities and artefacts defined by the
process are shown in Figure 2. Note that the activities typically proceed itera-
tively. For example, the activity “Restructure Original System” may start when
an initial component architecture is designed, and it may be revisited when an
updated architecture is available. The activities are outlined next.

Figure 2. Componentisation process.

Recover Original Architecture This activity uses as input the source code,
documentation, build files, and any other artefacts of the original system. It
involves analysing the source system, extracting architecturally significant in-
formation, and documenting different views of the original architecture. The
documentation must minimally include a run-time view describing executing
entities (e.g., distributed objects, objects, processes), communication paths, and
interactions over those paths (e.g., sequences of remote method invocations).

Design Component Architecture This activity produces the target compo-
nent architecture using as input the original architecture. The activity can be
divided into four steps:



114 Achievements in European Research on Grid Systems

Define initial architecture. The executing entities of the original archi-
tecture are used as candidate components to form an initial component
architecture.

Refine component selection. Candidate components are decomposed
into smaller components or integrated into larger components, and their
relationships and interactions are updated accordingly. These changes
are driven by modifiability and performance concerns. Decomposition is
typically used to increase the reusability of components and the flexibil-
ity of the architecture, whereas integration is used to reduce performance
overheads.

Specify component interfaces. By analysing and organising the interac-
tions between each component and its environment, this step identifies
provided and required interfaces. Multiple interfaces for each compo-
nent are defined in order to reduce dependencies.

Refine architecture using available component model features. The com-
ponent architecture is adapted to exploit all the available features pro-
vided by the target component model, such as hierarchical composition
in Fractal, or implicitly-accessed, container services in CCM.

Restructure Original System This activity restructures the original code
to make it match closely the component architecture, without yet using the
component platform. Specifically, the activity implements an interface-based
version of the system in which entities communicate as much as possible via
explicitly identified provided/required interfaces. The motivation is to validate
a large part of the architecture at an earlier time, and to simplify the migration
to the target platform. The activity can be divided into the following steps:

Align code with component architecture. This step ensures that the code
includes classes which correspond to all intended components, and that
these classes implement all interfaces provided by their corresponding
components.

Add dependency injection mechanism. Supporting configurable connec-
tions requires a uniform mechanism for injecting references to required
interfaces into objects. Such mechanisms are provided by most compo-
nent models, and are manifested as standard methods for accepting and
managing interface references. This step ensures that all classes corre-
sponding to intended components support an injection mechanism, thus
making their dependencies explicit and externally modifiable.

Use injection mechanism. This step modifies the classes so that they
invoke collaborating classes only through injected references. Moreover,
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the step modifies any “injector” code that supplies a class with references
to required objects to use the uniform injection mechanism.

Implement Component-based system This activity uses as inputs the com-
ponent architecture and the restructured, interface-based version. It typically
involves small changes for repackaging classes as components that execute on
the target platform. It may also involve changes for exploiting features of the
component model that were unavailable in the original object platform.

3.2 Fractal/ProActive component model

The second ingredient of our approach is Fractal/ProActive, which serves as
the target component platform in the componentisation process. Fractal/ProAc-
tive is a parallel and distributed component model that aims at building grid
applications [5]. It conforms to the generic Fractal model [7] and extends it with
a number of features that support grid programming. Fractal/ProActive is imple-
mented on top of the ProActive library [17]. Fractal and the Fractal/ProActive-
defined extensions are examined in turn next.

Fractal components are runtime entities that communicate exclusively
through interfaces of two types: client interfaces that emit operation invoca-
tions and server interfaces that accept them. Interfaces are connected through
communication paths, called bindings. Fractal distinguishes primitive compo-
nents from composite components formed by hierarchically assembling other
components (called sub-components). Hierarchical composition is a key Frac-
tal feature that facilitates understanding and developing component systems.
Another important Fractal feature is its support for extensible reflective facili-
ties. Each component is associated with an extensible set of controllers that en-
able inspecting and reconfiguring its internal features (e.g., modifying its set of
sub-components). Finally, Fractal includes an architecture description language
(ADL) for specifying configurations comprising components, their composition
relationships, and their bindings.

The Fractal/ProActive model extends Fractal in the following ways. Primi-
tive components are specialised to obtain the properties of remotely accessible
active objects. Composite components can contain multiple active objects and
can be distributed over different machines. Component communication relies
on asynchronous method invocations. A multicast communication style is also
supported, analogous to the group communication mechanism in ProActive.
Specifically, the component model defines a specialisation of Fractal inter-
faces, called multicast interfaces, that enable treating a set of invocations as
a single invocation. As with standard interfaces, multicast interfaces can have
a client or server type. Finally, the model supports configurable component
deployment based on the ProActive deployment descriptors.
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4. Componentising Jem3D

Jem3D was componentised using the approach presented previously. Most
of the effort was spent on the architecture recovery activity because of the
undocumented and degraded structure of the system. The run-time view of
the original architecture was described using UML object diagrams—such as
the one in Figure 1—and UML interaction diagrams. During the component
architecture design, the launcher entity (an executing Java program) was de-
composed into a subdomain factory component and an activator component;
the former is assigned the responsibilities for creating, initialising, and con-
necting the subdomains, and the latter the responsibilities for obtaining the
input data, passing them to the factory, and starting the computation. The rea-
son for the decomposition was to make the factory reusable beyond Jem3D.
A later iteration of the activity grouped the factory and the subdomains into a
composite domain component, exploiting the hierarchical composition feature
of Fractal/ProActive. Implementing the interface-based version served to in-
crease confidence in the new component architecture and drastically simplified
the final component-based implementation. The component-based implemen-
tation involved wrapping classes to form Fractal components and replacing a
large part of the injector logic with Fractal ADL descriptions, as seen next.

Figure 3. Component-based Jem3D structure.

Figure 3 shows the static structure of the resulting component-based Jem3D
using a UML component diagram (multicast interfaces are represented as
stereotyped UML interfaces with special notation). The runtime configuration
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consists of multiple subdomains, logically arranged in a 3D mesh, with each
subdomain connected to its neighbours via multicast interfaces. The runtime
configuration also includes a dynamically varying number of steering agents.
The main collector is connected to the current set of agents via a multicast in-
terface. A multicast interface is also used to connect each agent to all other
agents. The initial configuration of Jem3D is described using the Fractal ADL,
as seen in Figure 4 (pseudocode is used for brevity). Note that the ADL is
not used to express the configuration of subdomains, which depends on the
dynamically-determined domain division. Since allowable configurations fol-
low a fixed, canonical structure in the form of a 3D mesh, a parameterised
description would be useful for automatically generating subdomain configura-
tions. However, the Fractal ADL includes currently no variability mechanisms
for expressing such descriptions. The ADL does include a simple parameter-
isation mechanism, which is used to configure the factory with the required
subdomain implementation.

Component ConsoleSteeringAgent
definition = SteeringAgentImpl

Component MainCollector
definition = MainCollectorImpl

Component Activator
definition = ActivatorImpl

Component Domain
Interface ...// interfaces omitted
Component SubDomainFactory

definition = FactoryImpl (SubDomainImpl)
// bindings within composite (interfaces names omitted)
Binding This to SubDomainFactory
Binding SubDomainFactory to This

// bindings among top-level components (interface names omitted)
Binding ConsoleSteeringAgent to MainCollector
Binding MainCollector to ConsoleSteeringAgent
Binding Activator to MainCollector
Binding Activator to Domain
Binding MainCollector to Domain
Binding Domain to MainCollector

Figure 4. Initial configuration in the ADL.

Evaluation We now examine whether the new, component-based Jem3D
addresses the modifiability and reusability limitations of the original system.
Owning to the componentisation process, the new system has gained reliable
architectural documentation, which facilitates understanding and evolving the
system. Moreover, an important part of the architecture—i.e., the initial com-
ponent configuration—is captured in the ADL. As a result, the component
platform can automatically enforce architectural structure on implementation,
which helps reduce future architectural erosion. The use of provided and re-
quired interfaces as specified by the component model minimizes inflexible,
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hard-wired dependencies and allows flexible configuration after development
time. Considering the scenario of changing the subdomain implementation,
this can now be achieved simply by replacing a name in the ADL description
(i.e., the SubDomainImpl name in Figure 4). Moreover, the domain compo-
nent now serves as a reusable unit of functionality that supports the geometric
decomposition pattern. Specifically, the component accepts as input the subdo-
main implementation and the domain division and embodies the logic to create
and manage the runtime subdomain configuration.

5. Performance results

To assess the impact of componentisation on performance, we conducted
experiments with the aim to compare execution times of the object-based and
the component-based Jem3D versions. The experiments were performed on
Grid’5000, a French experimental grid platform currently featuring 2000 pro-
cessors distributed over 9 geographical sites [8]. The sites host locally ad-
ministered clusters connected through 1Gb/s links. Each experiment involved
running the two Jem3D versions for a given mesh size on the same number of
processors allocated on up to 3 clusters of Grid’5000. Table 1 shows the mesh
size and total number of processors used for each experiment.

Table 1. Jem3D experiments.

Experiment Mesh size Number of Processors

1 41×41×41 20
2 81×81×81 70
3 201×201×201 130
4 201×201×201 138
5 201×201×201 258
6 241×241×241 258
7 241×241×241 308

Figure 5 shows the execution times for each experiment. We distinguish
two kinds of execution time: (1) initialisation time, the time spent after de-
ployment of the ProActive runtime and before the start of the calculation, and
(2) computation time, the time spent performing the calculation. One can ob-
serve that execution times for the two versions are similar. As regards ini-
tialisation times, this result was unexpected as the component-based version
creates a larger number of entities (e.g., the domain and factory components).
Moreover, creating components is more costly than creating distributed ob-
jects due to the need to maintain extra meta-information. Initialisation times
are similar probably because Fractal/ProActive incorporates optimisations ab-
sent from the ProActive library. Computation times are similar because the



Componentising a Scientific Application for the Grid 119

costs of subdomain communications are similar. This can be attributed to that
the cost of remote object invocation outweighs any small overhead incurred by
the component model. The domain component does impose an overhead on
communications between the main collector and subdomains, but such infre-
quent communications have little impact on the calculation time. In summary,
the results provide evidence that componentisation has no adverse impact on
the performance of the Jem3D application.

Figure 5. Comparison of execution times.

6. Related work

Regarding the application of components to grid computing, most related
work to ours is that associated to the CCA (Common Component Architec-
ture) [9]. CCA is a component model for high-performance scientific comput-
ing that has been applied to a wide range of application domains [6]. CCA
components are dynamically connected through provides and uses ports. The
main difference with Fractal is that CCA lacks hierarchical composition as a
first-class part of the model. Ccaffeine [2] is an implementation of CCA that
supports parallel computing. Ccaffeine-based components interact within a
given process using CCA ports; parallel instances of Ccaffeine-based
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components interact across different processes using a separate programming
model, typically MPI. XCAT3 [12] is another CCA implementation that sup-
ports components distributed over different address spaces and accessible as
collections of grid services compliant to OGSI (Open Grid Services Infras-
tructure). [16] discusses assembling simulation software for partial differential
equations from CCA/Ccaffeine components, which encapsulate existing nu-
merical libraries. A simple process for converting such libraries to CCA com-
ponents is presented in [3]; the process involves first grouping provided and
used library functions to provides and uses ports, and then deciding how ports
are associated to components. Such work deals with wrapping existing soft-
ware packages as components rather than decomposing monolithic packages,
which is the focus of our paper.

Several researchers have reported experiences with componentising large
software systems. [13] describes the componentisation of operating system
software for MPSoC (multi-processor system on chip) platforms. Componen-
tisation relies on a lightweight Fractal implementation that targets embedded
systems software. Other case studies have concentrated on componentising
programmable controller software [14] and real-time telecommunication soft-
ware [1]. Although such work does not address grid programming, it provides
further evidence of the positive effects of componentisation on software mod-
ifiability.

7. Conclusion

This paper has presented a case study in reengineering a scientific applica-
tion into a component-based, grid-enabled application built on Proactive/Frac-
tal. The transformation from an object-based to a component-based system has
followed a general, architecture-based componentisation process. The paper
has provided qualitative evidence that componentisation using Fractal/ProAc-
tive is beneficial to the modifiability and reusability of the application. The
paper has also provided quantitative evidence that componentisation has no
adverse effect on performance.

There are three main directions for future work. First, we plan to apply
the componentisation process and the Fractal/ProActive component platform
to other applications in diverse domains. Such work will enable a more com-
plete assessment of their usefulness and usability, and generate further sug-
gestions for improvement. Second, we plan to provide tool support for the
componentisation process. Specifically, we envision that the recovery, restruc-
turing, and implementation activities will be largely automated using existing
reverse engineering and program transformation tools. The architecture design
activity will be supported by tools that employ clustering techniques, metrics,
and heuristics, such as in [11]. Finally, we plan to add support for dynamic
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reconfiguration in the component-based Jem3D application in order to accom-
modate variations in the availability of underlying resources. Supporting re-
configuration will involve the introduction of manager components that build
on the reconfiguration primitives already provided by the component model
(e.g., connect or disconnect components), without requiring any change to ex-
isting code.
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1. Introduction

In Grid environments, applications are composed of dispersed hardware and
software resources that need to be located and remotely accessed. Efficient
and effective resource discovery is then critical. Peer-to-Peer (P2P) techniques
have been recently exploited to achieve this goal.

A large amount of work on P2P resource discovery has been done, includ-
ing both unstructured and structured systems. Early unstructured P2P systems,
such as Gnutella [1], use the flooding technique to broadcast the resource re-
quests in the network. The flooding technique does not rely on a specific net-
work topology and supports queries in arbitrary forms. Several approaches
[2–4], moreover, have been proposed to solve two intrinsic drawbacks of the
flooding technique, i.e., the potentially massive amount of messages, and the
possibility that an existing resource may not be located. In structured P2P net-
works, Distributed Hash Tables (DHTs) are widely used. DHT-based systems
[5–7] arrange < key, value > pairs in multiple locations across the network.
A query message is forwarded towards the node that is responsible for the key
in a limited number of hops. The result is guaranteed, if such a key exists in
the system. As compared to unstructured systems, however, DHT-based ap-
proaches need intensive maintenance on hash table updates.

Taking into account the characteristics of Grids, several P2P resource dis-
covery techniques have been adapted to such environments. For instance,
DHT-based P2P resource discovery systems have been extended to support
range value and multi-attribute queries [8–12]. Two major differences between
P2P systems and Grids, however, determine their different approaches towards
resource discovery. First, P2P systems are typically designed to share files
among peers. Differently, Grids deal with a set of different resources, rang-
ing from files to computing resources. Second, the dynamism of P2P systems
comes from both nodes and resources. Peers join and leave at any time, and
thus do the resources shared among them. In Grid environments, nodes con-
nect to the network in a relatively more stable manner. The dynamism of Grids
mainly comes from the fast-changing statuses of resources. For example, the
storage space and CPU load can change continuously over time.

Highlighting the variety and dynamism of Grid resources, this paper pro-
poses a DHT-based resource discovery architecture for Grids. The rest of the
paper is organized as follows. Section 2 introduces existing Grid resource dis-
covery systems that relate to our work. Section 3 discusses characteristics of
Grid resources and related query requirements. Section 4 unfolds the picture of
the proposed architecture, and studies the performance of its dynamic resource
discovery strategy through simulations. Section 5 concludes the paper.
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2. Related work

Several systems exploiting DHT-based P2P approaches for resource discov-
ery in Grids have been proposed [8–12]. Two important issues addressed by
these systems are multi-attribute resource discovery and range queries.

Multi-attribute resource discovery refers to the problem of locating resour-
ces that are described by a set of attributes or characteristics (e.g., OS version,
CPU speed, etc.). To resolve a multi-attribute query, the most used approach
is to decompose the query in a set of sub-queries (one per attribute), and then
to perform a single-attribute search for each sub-query. The retrieved results
are then intersected at the querying node to find the final set of resources that
satisfies the original query [8–10].

Range queries look for resources specified by a range of attribute values
(e.g., a CPU with speed in the range from 2.2 GHz to 3.6 GHz). These
queries are not supported by standard DHT-based systems such as Chord [5],
CAN [6], and Pastry [7], because those systems make use of hash functions
that do not preserve the locality of values. To support range queries, a typical
approach is to use locality preserving hashing functions, which retain the order
of numerical values in DHTs [8–9].

MAAN [8] provides support for multi-attribute range queries by exploit-
ing the Chord protocol [5]. Each node in MAAN is part of a Chord over-
lay. The values of the resources are mapped to the Chord key space using
a locality preserving hash function and having one different registration for
each resource attribute. Each registration is composed by a pair < attribute-
value, resource-info >. Each node is responsible of maintaining the infor-
mation of the registered keys that fall into the key space sector it supervises.

The resolution of multi-attribute range queries is implemented in two dif-
ferent ways. The first one follows the general approach described above:
if a query is composed of M sub-queries, each sub-query is resolved sep-
arately in the proper attribute space. The results are then collected and in-
tersected at the query originator node. The complexity of this approach is
O(

∑M
i=1 (logN + N × si)), where M is the number of sub-queries, N is the

number of peers, and si is the selectivity of sub-query i, defined as the ratio of
the query range width to the size of the whole identifier space.

The second method is defined as a single-attribute dominated routing. Let
X be the set of resources that satisfies query Q. X should satisfy all the sub-
queries of Q, then X =

⋂
1≤i≤M Xi, where Xi is the set that satisfies the

sub-query on attribute ai. MAAN uses Chord to find a single set of candidate
resources Xk for attribute ak. Xk is a superset of X , so all the solutions for
query Q are contained in Xk. Since all the resources store a < attribute-
value, resource-info > pair, it is possible to exploit the resource-info field
to find the Xk’s resources that match all the other sub-queries. This method has
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a complexity of O(logN +N ×Smin), where Smin is the minimum selectivity
for all attributes.

Andrzejak and Xu [9] propose an extension of CAN [6] to support range
queries in a Grid information system. For each attribute of a generic Grid
resource either a standard DHT or the proposed CAN extension is used de-
pending on its type. In particular, attributes which have a limited number of
values are handled by standard DHT systems, while for “continuous” types of
attributes the extended CAN system is adopted. To locate resources specified
by several attributes, the information infrastructure queries for each attribute
present in the query the appropriate DHT and then concatenates the results in
a database-like “join” operation.

A subset of the Grid servers participates as nodes in a CAN-based P2P-
network and store the pairs < attribute-value, resource-ID >. Each one of
them is responsible for a given subinterval of the attribute values. Such a server
is called an Interval Keeper (IK) and the corresponding subinterval its interval.
Each server in the Grid reports its current attribute value to an IK with the
appropriate interval. The authors propose different strategies for propagating
range-query requests and to minimize the communication overhead during the
attribute updates.

Another example of DHT-based system is XenoSearch [10], which exploits
and extends the Pastry framework [7]. XenoSearch allows multi-dimensional
search by using a separate Pastry ring for each attribute. A peer registers itself
separately in each ring. Range queries for a single attribute are possible thanks
to the fact that the information is conceptually stored in a tree where the leaves
are the peer nodes. The tree internal nodes are called Aggregation Points (AP).
Each AP summarizes the range of values of the nodes below it in the tree. An
AP is distinguished by a key in the same key space as the attributes. The key
of an AP is a prefix of the keys of its child nodes. By knowing the key of an
AP, it is possible to determine the range of values of the leaf-nodes of that AP.
An AP key is mapped into the Pastry ring and the closest peer in the key space
is in charge for maintaining the information related to that AP.

As before, multi-attribute queries are resolved by decomposing each query
in a set of sub-queries, and resolving all the sub-queries in parallel. The client
that originated the query is given a set of possibly matching peers. The client
has to further query the nodes to know the real server’s resource state. This is
necessary because the information in the system is refreshed only periodically.

In order to efficiently support multi-attribute queries, the systems described
above arrange attribute values on multiple DHTs, one per attribute. Some other
systems [11–12] adopt a single DHT for all attributes, using specific strategies
to map multiple values into a single key space. Both multi-DHT and single-
DHT approaches have proved effective, but multi-DHT architectures are easier
to implement and provide multi-attribute search capabilities in a simple way.
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The system proposed in this paper uses multiple DHTs to manage attributes
of multiple resources. This provides a straightforward architecture, and leaves
space for potential extensions.

Two works that are strictly related to our framework are the Gnutella-based
dynamic querying protocol [13], and the algorithm for broadcast over DHTs
proposed in [14].

Dynamic querying [13] is a strategy used to reduce the number of messages
generated by flooding. In dynamic querying, the peer that initiates a search
controls the query propagation by sending it only to a subset of its neighbors
and with a small Time-to-Live (TTL). If this first attempt does not produce the
expected number of results, the originating peer proceeds iteratively by sending
the query to a different set of neighbors with increased TTL. For relatively
popular contents this strategy significantly reduces the number of messages
without increasing the response time.

Broadcast in DHT-based P2P networks [14] adds a broadcast service to a
class of DHT systems that have logarithmic performance bounds. In a network
of N nodes, the node that starts the broadcast reaches all other nodes in the
network with exactly N − 1 messages (that is, no redundant messages are
generated), with logN steps.

The approach for dynamic resource discovery proposed in this paper is in-
spired by both the dynamic query strategy and the broadcast approach men-
tioned above. It uses a DHT for broadcasting queries to all nodes without
redundant messages, and adopts a similar “incremental” approach of dynamic
query. This approach reduces the number of exchanged messages and response
time, which ensures scalability in large-scale Grids.

3. Resources and query types

In Grids, resources belong to different resource classes. A resource class
is a “model” for representing resources of the same type. Each resource class
is defined by a set of attributes which specify its characteristics. A resource is
an “instance” of a resource class. Each resource has a specific value for each
attribute defined by the corresponding resource class. Resources are univocally
identified by URLs.

An example of resource class is “computing resource” that defines the com-
mon characteristics of computing resources. These characteristics are des-
cribed by attributes such as “OS name”, “CPU speed”, and “Free memory”.
An instance of the “computing resource” class has a specific value for each at-
tribute, for example, “OS name = Linux”, “CPU speed = 1000MHz”, and “Free
memory = 1024MB”. Table 1 lists some examples of Grid resources classes.
A more complete list of resource classes can be found in [15].
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Table 1. Examples of Grid resource classes.

Resource class Description

Computing resource Computing capabilities provided by computers, clusters of
computers, etc.

Storage resource Storage space such as disks, external memory, etc.

Network resource
Network connections that ensures collaboration between Grid
resources.

Device resource Specific devices such as instruments, sensors, etc.

Software resource Operating systems, software packages, Web services, etc.

Data resource Various kinds of data stored in file systems or databases.

Resource classes can be broadly classified into intra-node and inter-node
resources. “Computing resource” is an example of intra-node resource class.
An example of inter-node resource class is “network connection” (see Table
1), which defines network resource characteristics. Figure 1 shows a simple
Grid including four nodes and three resource classes. As examples of intra-
node resources, NodeA includes two instances of resource class a and one
instance of resource class b. The figure also shows two inter-node resources:
one between NodeA and NodeD, and the other between NodeB and NodeD.

The attributes of each resource class are either static or dynamic. Static
attributes refer to resource characteristics that do not change frequently, such
as “OS name” and “CPU speed” of a computing resource. Dynamic attributes
are associated to fast changing characteristics, such as “CPU load” and “Free
memory”.

Network Resource class a

Resource class b

Resource class c

Node A

Node CNode D

Node B

Figure 1. Inter-node and intra-nodes resources.
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The goal of resource discovery in Grids is to locate resources that satisfy
a given set of requirements on their attribute values. Three types of queries
apply to each attribute involved in resource discovery:

Exact match query, where attribute values of numeric, boolean, or string
types are searched.

Range query, where a range of numeric or string values is searched.

Arbitrary query, where for instance partial phrase match or semantic
search is carried out.

A multi-attribute query is composed of a set of sub-queries on single at-
tributes. Each sub-query fits in one of the three types as listed above, and the
involved attributes are either static or dynamic.

Complex Grid applications involve multiple resources. Thus, multi-resource
queries are often needed. For instance, one can be interested in discovering
two computing resources and one storage resource; these resources may not be
geographically close to each other. A multi-resource query, in fact, involves
a set of sub-queries on individual resources, where each sub-query can be a
multi-attribute query.

Taking into consideration both characteristics and query requirements of
Grid resources, the P2P search techniques exploited in our framework are listed
in Table 2.

Table 2. P2P search techniques for different types of resources and queries.

Static Grid resources Dynamic Grid resources

Exact queries Structured Unstructured

Range queries Structured Unstructured

Arbitrary queries Unstructured Unstructured

As shown in the table, structured search is used only for exact and range
queries on static Grid resources. This is because DHT-based structured sys-
tems are not effective for dynamic resources and arbitrary queries. In fact,
DHT-based P2P systems were not originally designed for queries of arbitrary
expression forms. Moreover, fast-changing resources, such as CPU load, re-
quire frequent updates on DHTs, and thus cause prohibitive maintenance costs.
On the other hand, unstructured approaches are used for both dynamic Grid re-
sources and arbitrary queries on static resources. This is because unstructured
systems generally do not require table updates and maintenance. However,
the huge amount of messages generated by flooding-based unstructured sys-
tems requires the use of appropriate strategies to ensure scalability in large
networks.
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4. System architecture

The framework aims to provide a generic architecture that leverages existing
techniques to fulfill various resource discovery needs in Grid environments. In
order to exploit diverse resource discovery techniques, the DHT-based archi-
tecture described in Figure 2 is proposed.

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Rc

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Rb

Attribute Ra.Asn

Attribute Ra.As2

......

Attribute Ra.As1

Resource class Ra

Attributes (Ad1,..., Adn)

Figure 2. System architecture.

The system is composed of a set of virtual planes, one for each resource
class. Within the virtual plane of resource class Ra, for example, static at-
tributes Ra.As1, ..., Ra.Asn are associated to their DHTs, respectively. Exact
or range queries on static attributes are carried out using the DHTs correspond-
ing to these attributes.

An additional “general purpose” DHT is dedicated to queries on dynamic
attributes and to arbitrary queries on static attributes. This DHT is different
from the DHTs in the virtual planes. The DHTs in the virtual plane are standard
DHTs, in which both nodes and resource identifiers are mapped to the same
ring. In general purpose DHT, only node identifiers are mapped to the ring,
while resources are not mapped to it. In other words, there are not pointers to
resources in the general purpose ring.

The general purpose DHT is used to broadcast queries to all Grid nodes
whose identifiers are mapped to the ring. All Grid nodes reached by a query are
in charge of processing it against the local resources, and sending the response
to the node that initiated the query. The mechanisms used for broadcasting a
query on this ring are described in Section 4.3.

4.1 Local components

Figure 3 shows the software modules inside each Grid node. With multiple
virtual planes defined in the system, each node participates in all DHTs of
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these virtual planes. Therefore, multiple finger tables corresponding to each
DHT co-exist in each node, as illustrated in Figure 3. For example, finger
tables FT (Ra.A1), FT (Ra.A2),..., and FT (Ra.An) correspond to DHTs of
attributes Ra.As1...Ra.Asn in Figure 2.

FT (General purpose DHT)

Query Engine
From other nodes

To other nodes

......

FT (Ra.A 1)

FT (Ra.A 3)

FT (Ra.A 2)

......

FT (Ra.A 1)

FT (Ra.A 3)

FT (Ra.A 2)

......

FT (R a.A1)

FT (R a.A2)

FT (R a.A3)

Figure 3. Software modules inside each Grid node. FTs are finger tables associated to the
used DHTs.

The finger table of the general purpose DHT , that is, FT(General pur-
pose DHT), is used to reach individual nodes and locate dynamic attributes
Ad1,...,Adn. A query engine processes resource discovery requests and asso-
ciates them to different query instances and thus DHTs. The results are then
generated at the node where related queries are initiated.

4.2 Static attribute discovery

A number of systems that support multi-attribute range query have been pro-
posed. As discussed in Section 2, they either use one DHT for all attributes,
or arrange attribute values on multiple DHTs. While both single-DHT and
multi-DHT approaches have proved effective, we adopt the multi-DHT strat-
egy because of its simplicity and extension potentials.

Assume there are p classes of resources, each of which has q types of at-
tributes. Although one node does not necessarily have all attributes, it is in-
cluded in all DHTs, and the values of its blank entries are left as null. The
number of finger tables that a node maintains is p × q.

While existing approaches support resource discovery on single or multiple
attributes of one resource class, the architecture proposed in this paper manages
multiple resources. One way to do this is to hash the string of “resource class
+ attribute” into a DHT ID; this ID is used to identify the corresponding finger
table inside a node.
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4.3 Dynamic attribute discovery

As mentioned in Section 2, our approach for dynamic resource discovery
exploits both the dynamic query [13] and the broadcast over DHT [14] strate-
gies. The general purpose DHT and associated finger tables, as illustrated in
Figures 2 and 3, are used only to index Grid nodes, without keeping pointers to
Grid resource attributes. Queries are then processed by the local query engine
of each node.

4.3.1 To reach all nodes. To reach all nodes without redundant mes-
sages, the broadcast strategy is based on a DHT [14]. Taking a fully populated
Chord ring with N = 2M nodes and a M -bit identifier space as an example.
Each Chord node k has a finger table, with fingers pointing to nodes k + 2i−1,
where i = 1, ..., M . Each of these M nodes, in turn, has its fingers pointing
to another M nodes. Each node forwards the query to all nodes in its finger
table, and in turn, these nodes do the same with nodes in their finger tables. In
this way, all nodes are reached in M steps. Since multiple fingers may point to
the same node, a strategy is used to avoid redundant messages. Each message
contains a “limit” argument, which is used to restrict the forwarding space of
a receiving node. The “limit” argument of a message for the node pointed by
finger i is finger i + 1.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 0

1
2
4

2
3
5

3
4
6

4
5
7

5
6
0

6
7
1

7
0
2

0
1
3

Figure 4. An example of broadcast.

Figure 4 gives an example of an eight-node three-bit identifier Chord ring.
The limit of broadcast is marked with a black dot. Three steps of communi-
cation between nodes are demonstrated with solid, dotted, and dashed lines.
Obviously, node 0 reaches all other nodes via N −1 messages within M steps.
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The same procedure applies to Chord ring with N < 2M (i.e., not fully pop-
ulated networks). In this case, the number of distinct fingers of each node is
logN on the average.

4.3.2 Incremental resource discovery. The broadcast over DHT pre-
sented above adopts a “parallel” approach. That is, the node that initiates the
discovery tasks sends the query message to all its fingers in parallel.

Although no redundant messages are generated in the network, its N − 1
messages can be prohibitive in large-scale Grids. Referred to as “incremental”,
our approach uses a mixed parallel and sequential query message forwarding.

A “parallel degree” D is introduced to adjust the range of parallel mes-
sage forwarding, and thus curb the number of exchanged messages. Given
a node that initiates the query, it forwards the query message in parallel to
nodes pointed by its first distinct D fingers. If there is a positive response, the
search terminates; otherwise, this node forwards the query message to the node
pointed by its D+1 finger. This procedure applies to nodes pointed by the rest
of fingers, sequentially, until a positive response returns.

When D = M , our incremental approach turns into the parallel one; when
D = 1, the incremental approach becomes a sequential one, where nodes
pointed by all fingers are visited one after another.

The number of generated messages by the incremental approach is obvi-
ously less than or equal to that of the parallel one. The response time of in-
cremental approach, however, may be prolonged owing to its sequential query
message forwarding. We argue that this does not necessarily hold true. In
large-scale Grids, multiple query requests at one node can be prominent, which
adds extra delay to response time. Under this circumstance, the incremental
approach shall benefit from its reduced number of messages that shortens this
extra delay.

4.3.3 Performance evaluation. A discrete-event simulator has been
implemented to evaluate the performance of the incremental approach in com-
parison with the parallel approach. Two performance parameters have been
evaluated: the number of messages Q and the response time T . Q is the total
number of exchanged messages in the network, and T is the time a node waited
to receive the first response (i.e., the first query hit).

The main system parameters are: N , the number of Grid nodes in the net-
work; R, the number of nodes that concurrently submit query requests; P ,
the fraction of nodes that possesses the desired resource; and D, the number
of first distinct fingers the search is conducted on in parallel. The number of
nodes N was ranged from 2000 to 10000, R from 10 to 1000, and P from
0.005 to 0.25. Finally, we used D = 7 in all simulations. The system parame-
ter values have been chosen to fit as much as possible with real Grid scenarios.
In particular, the wide range of values chosen for P reflects the fact that, in
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real Grids, discovery tasks can search both for rare resources (e.g., the IRIX
operating system) and more popular ones (e.g., Linux).

The time to pass a message from NodeA to NodeB is calculated as the
sum of a processing time and a delivery time. The processing time is propor-
tional to the number of queued messages in NodeA, while the delivery time is
proportional to the number of incoming messages at NodeB. In this way, the
response time depends on both message traffic and processing load of nodes.

Table 3 shows the number of exchanged messages in both parallel and in-
cremental strategies, with R = 1. The parallel strategy always generates N−1
messages for each submitted query, which could be prohibitive for large-scale
Grids. In the incremental approach, the number of messages is dramatically
reduced. Moreover, when the value of P is over a certain limit, the number
of messages fluctuates around the value of 2D and it does not depend from the
number of nodes (i.e., network size). This limit is determined by the number
of Grid nodes N , the fraction of nodes with matching resources P , and the
number of first distinct fingers D.

Table 3. Comparison on the number of exchanged messages (Q) in parallel and incremental
approaches.

N P Q (Parallel) Q (Incremental)

2000

0.005 1999 279

0.10 1999 127

0.25 1999 126

4000

0.005 3999 326

0.10 3999 129

0.25 3999 124

6000

0.005 5999 291

0.10 5999 126

0.25 5999 126

8000

0.005 7999 282

0.10 7999 128

0.25 7999 128

10000

0.005 9999 389

0.10 9999 127

0.25 9999 125

For example, in a network with N = 10000, when P = 0.1 the number of
matching resources is N × P = 1000. The number of nodes included in the
first D = 7 fingers is 2D = 128, on the average. Obviously, this density is
high enough for the incremental strategy to locate the desired resource within
the first D fingers. With a lower value of P , nevertheless, the search needs to
go beyond the first D fingers; this introduces a fluctuation in the number of
exchanged messages, as in the case of P = 0.005.
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Figure 5 shows the response time in a network composed by 10000 nodes,
with P = 0.10 and values of R ranging from 10 to 1000. The response time is
expressed in time units.

Figure 5. Response time in parallel and incremental approaches (N = 10000).

The main result shown in Figure 5 is that, when the value of R is at the
lower end of its range, the parallel approach has a shorter response time. When
the value of R increases, the incremental approach outperforms the parallel
one. This is because in the parallel approach the overall number of generated
messages is much higher than the one in the incremental approach, resulting
in increased message traffic and processing load that cause a higher response
time.

It is important to recall that in our simulator the processing time is pro-
portional to the number of messages to be processed, and the delivery time
is proportional to the number of messages to be delivered. Therefore, the re-
sponse time increases linearly with message traffic and load of nodes. In a
more realistic scenario the processing time and the delivery time may increase
exponentially with the load of the network. In this case, the response time in
the incremental approach should result significantly better that the parallel one.
To better evaluate the effect of high loads in large-scale Grids, we are currently
studying the use of more complex processing and delivery time functions in
our simulator.

5. Conclusions

This paper introduced a DHT-based P2P framework to address the variety
and dynamism of Grid resources. It exploits multiple DHTs and existing P2P
techniques for multiple static resources and implements an “incremental” re-
source discovery approach for dynamic resources. As compared to the original
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strategy, the incremental approach generates reduced number of messages and
experiences lower response time in large-scale Grids.

Our previous work on Grid resource discovery mainly focused on the use of
unstructured P2P protocols and Grid services to address the dynamism of Grid
resources [16]. This work improves the previous one by combining the use
of structured and unstructured techniques to address arbitrary queries on both
static and dynamic Grid resources. We are currently studying how to extend
the architecture in this paper to address Grid service discovery, including new
features such as dynamic service indexing and XML-based queries support.
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Abstract One way to ease the development of Grid applications is to specify and design
an Integrated Toolkit which will enable the development of Grid-unaware appli-
cations i.e. applications where the Grid is transparent to them but that are able to
exploit its resources. Achieving this vision of an Integrated Toolkit requires the
investigation and definition of integration between different systems. This pa-
per studies the integration possibilities of GriCoL, a language for the description
of complex Grid experiments, and GRID superscalar, a run-time environment
which automatically converts sequential program code and deploys it for execu-
tion on a Grid. GriCoL operates on a multi-layer paradigm, using both a control
flow layer and a data flow layer. We propose integration with GRID superscalar
at each of these layers, concluded that integration at the control flow level is
difficult to achieve but at the data flow level is possible.

Keywords: Grid programming models, Problem solving environments, GRID superscalar,
GriCoL.
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1. Introduction

The difficulty associated with developing applications to be run on the Grid
is a major barrier to adoption of this technology by non-expert users. The chal-
lenge in this case is to provide programming environments for Grid-unaware
applications, defined as applications where the Grid is transparent to them but
that are able to exploit its resources. Furthermore, the challenge is to increase
the performance of these applications when possible.

To meet these challenges, one research task of the CoreGRID Institute for
Grid Systems, Tools and Environments is the development of an Integrated
Toolkit [1]. This task aims to specify and design an Integrated Toolkit which
will enable the development of Grid-unaware applications. The run-time of
such an integrated toolkit would run these applications in a Grid and optimise
their performance dynamically.

The CoreGRID STE vision of an Integrated Toolkit is composed of an In-
tegrated Toolkit run-time and of Integrated Toolkit bindings to different pro-
gramming languages or to graphical tools and portals. For the specification
and design of the Integrated Toolkit, the integration between several different
systems is being investigated and defined [1]: ProActive, PadicoTM, GRID
superscalar, P-GRADE Portal, Satin/Ibis, GAT/SAGA and the monitoring en-
vironment OCM-G. In addition, this paper discusses the integration of GriCoL
[2], a language for the description of complex Grid experiments, and GRID su-
perscalar, a run-time environment which automatically converts sequential pro-
gram code and deploys it for execution on a Grid. Several languages (C/C++,
Perl, Java and Shell script) are already supported for programming with GRID
superscalar [5].

Figure 1 illustrates a vision of how these various components above can
interoperate to realistically build an Integrated Toolkit.

Figure 1. Integrated Toolkit picture.
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The GriCoL language is Grid-unaware. It is a component-based language
for describing complex scientific modeling experiments with a sufficient level
of abstraction that the user does not require a knowledge of the Grid or parallel
programming. GriCoL is currently utilised within the problem solving en-
vironment Science Experimental Grid Laboratory (SEGL)[3], which enables
the automated creation, start and monitoring of complex scientific experiments
and supports their effective execution on the Grid. SEGL has two main parts:
a GUI for the design of the experiment, by working with elements of GriCoL,
and a run-time system which chooses the necessary computer resources, or-
ganises and controls the sequence of execution according to the task flow and
the conditions of the experiment program. Sections 2 and 3 of this paper de-
scribe respectively GriCoL and GRID superscalar in more detail and section 4
studies the integration possibilities of these two frameworks as a further step
in the realisation of the CoreGRID STE Integrated Toolkit.

2. GriCoL

GriCoL is a universal language for programming complex computer- and
data-intensive tasks without being tied to a specific application domain.

GriCoL is a graphical-based language with mixed type and is based on a
component-structure model. The main elements of this language are blocks
and modules, which have a defined internal structure and interact with each
other through a defined set of interfaces.

The language is of an entirely parallel nature. It can implement parallel pro-
cessing of many data sets at all levels, i.e. inside simple language elements
(modules); at the level of more complex language structures (blocks) and for
the entire experiment. In general, the possibility of parallel execution of oper-
ations in all nodes of the experiment program is unlimited.

In order to utilize the capacities of supercomputer applications and to enable
interaction with other language elements and structures, it makes use of the
principle of wrapping the functionality into components.

Another important property of the language is that it is multi-tiered. This
enables the user when describing the experiment to concentrate primarily on
the logic of the experiment program and subsequently on the description of the
individual parts of the program. The top level of the experiment program is
the control flow level, which describes the logical sequence of execution. The
main elements of this level are blocks: control blocks and solver blocks. A
solver block is the program object which performs some complete operation.
The standard example of a solver block can be a simple parameter sweep. The
control block is the program object which allows the changing of the sequence
of the execution according to a specified criterion. The lower level, the data
flow level, provides a detailed description of components at the top level, the
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control flow level. The main elements of the data flow level are program mod-
ules and database sections. The sublayer provides a common description of the
database and a section for making additions to the database if necessary. The
elements of the language have graphical notation and are represented by icons
(for modules and blocks) or as connection lines.

Figure 2 illustrates the above mentioned for an molecular dynamic simula-
tion at the control flow level.

Figure 2. Screenshots of Molecular Dynamics Simulation ((a) Control flow and (b) Data flow
of a solver block.

As can be seen from this figure the language components make it possible
to generate multilayer dynamic-control experiment programs with branches.
GriCoL offers the user a complete range of control mechanisms on experiment
processes: parallelization, testing of conditions and branching, synchroniza-
tion and fusion, as well as exchange of messages and signals.

Solver blocks represent the nodes of data processing. Control blocks are
either nodes of data analysis or nodes for the synchronization of data com-
putation processes. They evaluate results and then choose a path for further
experiment development. Another important language element on the control
flow level is the connection line. There are two mechanisms of interaction
between blocks which are described with the help of connection lines (either
red-solid or blue-dashed). If the connection line is blue in colour, the proce-
dure is as follows: each time the computation of an individual data set has
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been finished, i.e. after completion of a program run within a block, control is
transferred to the next block. This process is repeated until all program runs
in the block have been completed. That means a pipelined operation on the set
of runs. If the connection line is red in colour, control is not passed to the next
block before all runs in the previous block have been finished. That means a
barrier on the set of runs.

We can illustrate this with an example taken from the field of Molecular
Dynamics (MD) simulation, which is a computational method to calculate the
time dependent behaviour of a biological molecular system. The left-hand
screenshot of figure 2 shows the client visual editor at the control flow level
of a large-scale MD simulation study. A total of 3000 different topologies of
the system (with different enzyme variants, substrates and starting conditions)
are generated in the preparation solver block B.01. The blue-dashed connec-
tion lines in figure 2 (e.g. between B.01 and B.02) indicate that as soon as a
particular simulation task in B.01 has finished, it can be passed on to the next
block B.02. A solid line between blocks (e.g. between B.06 and B.07) means
that all tasks have to be finished in the preceding block before the control flow
proceeds to the next block.

At the data flow level, a typical example of a solver block program is a
modeling program (or a program fragment) which cyclically computes a large
number of input data sets. At this level, the user can describe the manipulation
of data in a very fine grained way. The solver block consists of computation
(C), replacement (R), parameterization (P) modules and a database (Exp.DB).
These are connected to each other with lines showing the data transfer between
modules and the sequence of execution during the computation process. Each
module is a Java object, which has a standard structure and consists of several
sections. For example: each computation module (C) consists of four sections.
The first section organizes the preparation of input data. The second gener-
ates the job and controls its execution. The third initializes and controls the
record of the result in the experiment data base. The fourth section controls
the execution of module operation. It also informs the main program of the
block about the manipulation of certain sets of data and when execution within
a block is complete. A typical control block program carries out an iterative
analysis of the data sets from previous steps of the experiment program and
selects either the direction for the further development of the experiment or
examines whether the input data sets are ready for further computation, and
subsequently synchronizes their further processing.

This example demonstrates an advantage of GriCoL over the many exist-
ing tools such as Nimrod[4] or Condor [4] in carrying out complex parameter
investigation studies. Nimrod is able to generate parameter sweeps and jobs,
running them in a Grid and collecting the data. However, it is unable to perform
the task dynamically by generating new parameter sets through an automated
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optimization strategy. Condor can be used to launch pre-existing parameter
studies using distributed resources but gives no special support for dynamic
parameter studies.

The right-hand screenshot of figure 2 shows, at the data flow level, the client
visual editor for a particular aspect of the previously described MD simula-
tion. It shows the data flow of the equilibration solver block (B.03) from the
left-hand screenshot (control flow level). The computation module (C-Amber)
for the simulation program needs the system topology, the coordinates of the
system to start from and an input file. Whereas the system topology and the
starting coordinates are taken out of the experiment database via the selec-
tion module (S2 and S3), the input files are created for each simulation run
individually. Therefore three parameterization modules (P1 -P3) provide the
values for the replacement module (R1) that puts these values into an input file
skeleton taken from the experiment database (via selection module S1). The
resulting output form the simulation is put back into the experiment database.

3. GRID superscalar

As a programming model, GRID superscalar is focused on easing the pro-
gramming of Grid applications. It is clear that the easiest way of programming
for a user is with the desired programming language, in which the user is al-
ready an expert, and in a sequential fashion, without using complicated parallel
schemes where the user must control syncronizations, message passings, and
so on. GRID superscalar achieves this by providing bindings to different pro-
gramming languages (currently C/C++, Perl, Java and Shell script), and a run-
time which automatically executes in parallel the user-defined functions that
do not have data dependencies between them. From that source code, GRID
superscalar builds internally a workflow with the existing data dependencies
between functions, as shown in figure 3, and from that workflow the tasks
without dependencies are considered to be run on the Grid. GRID superscalar
is not only a programming model, but also a set of tools that allows users to
easily gridify an application.

This programming model has been adapted to several environments, cur-
rently: Globus (which can work with versions 2 and 4 of the Globus Toolkit
[6]), ssh/scp, Ninf-G [7] , and the next development version, which adds the
data dependence detection between scalar parameters.

In order to program an application with GRID superscalar, a developer must
provide a main program, the code of the functions in that specific main pro-
gram to be executed in the Grid, and an IDL file, which describes the interface
of these functions (the type of the parameters, and the direction of these param-
eters). There is a small set of calls that must be added in the main program:
GS On for starting the run-time, and GS Off for stopping it. Calls for handling
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Figure 3. GRID superscalar in a nutshell.

local files (GS Open/GS Close, GS FOpen/GS FClose), as the file is the data
unit considered for detecting the dependencies between the functions. Also
more advanced, but optional, primitives are provided, such as GS Barrier to
wait for all generated tasks to finish, and GS Speculative End to easily create
optimization-like algorithms.

GRID superscalar is not only a programming model, but also includes a set
of tools in order to ease the porting of the application to the Grid. A tool named
Deployment Center allows not only to graphically specify and check the Grid
configuration, but also to deploy (send and compile) locally and remotelly the
code involved in this developer’s project. This deployment step is assisted
by gsstubgen, another tool in charge of generating stubs and skeletons needed
for allowing the run-time calls, and gsbuilder, responsible for compiling the
generated code. This process creates a local client binary and several remote
server binaries, which lets a master-worker paradigm application ready to run.

When the user invokes the local binary (the master or client) the run-time
comes into action. It starts building a Directed Acyclic Graph containing the
data dependencies between the tasks generated till that moment, and at the
same time starts submitting the tasks which are ready (with no dependencies)
to the available machines, thus achieving its parallel execution. In order to
decide which is the most suitable host for a task, an estimation of the task’s
execution time provided by the user is considered, as well as the time that will
be spent to transfer all input files required.

The run-time is also in charge of transferring the files needed by a task to
the selected host, submitting the task, and after completion, transfer the results
back to the master. The input and output files related to a task are kept in the
worker till the end of the execution to try to exploit the locality of files, thus
saving file transfers. So the results of a task can be used when the task finishes,
without having to wait for the transfer to the master to end. When a task has



146 Achievements in European Research on Grid Systems

finished, the data dependence graph is updated (this can generate new ready
tasks) and the resource becomes available for executing a new task. And at the
end of the execution, the remote files are cleaned up, and the remaining results
are transferred back to the master, so leaving everything as if it had been a local
execution of the application. Other techniques are used in the run-time, such
as file renaming to erase false data dependencies, disk sharing to make GRID
superscalar aware of data replicas or real shared file systems, checkpointing in
order to restart the computation from where it stopped because of a big failure,
and ClassAds [8] constraints specification to filter the resources in the Grid.
Also dynamic host reconfiguration is offered to add or remove machines to the
computation.

For monitoring the execution, the GRID superscalar Monitor can be used.
This tool is very useful to visualize the task dependence graph in order to
investigate why the application does not reach the desired parallelism. It also
shows the status of the tasks: if a task is running it states the machine where
the task is running, and when a task is done, it still holds the information about
where it has been run, thus providing a graphical way of determining which
hosts are executing more tasks.

Regarding the ssh adaptation of the programming model, one of the objec-
tives was to overcome the overhead detected in some Grid middlewares when
submitting small granularity jobs. Also if a user wants to work with GRID
superscalar inside a cluster it makes no sense in introducing the overhead of
calling to a Grid middleware in order to operate between the different nodes,
because all the resources are local. Inside a cluster there is no need of en-
crypted communication, so an easier task notification mechanism can be used,
based on TCP/IP sockets.

The Ninf-G adaptation offered several advantages for GRID superscalar
when using a Grid middleware. Ninf-G has an advanced file transfer protocol
and the possibility of creating persistent workers. Ninf-G is a GridRPC imple-
mentation, thus provides a simpler interface, in contrast to Globus, where the
job submission is based on building the corresponding RSL.

The current developments of the programming model have a different gen-
eral approach for achieving the parallelization of the code. Instead of using
generation of intermediate code from the IDL file, the new version is based in
code annotations and using a source to source compiler. It offers new features
such as full support for scalar variables, support for multidimensional arrays
and structs only containing scalars, client side worker threads and tracing for
post-mortem analysis.
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4. Studying the integration possibilities

The first thing to consider when trying to integrate these two tools is their fo-
cus. GirCoL is a graphical language, which is based on a component - structure
model. The components of GriCoL, e.g. MPI programs or genetic algorithms,
are prepared by the programmer by wrapping the code into the component.
The user can then create the experiment using these components by using a
tool (such as SEGL), which utilizes GriCoL. The program codes are located
in the database and during the execution are sent to the currently available re-
sources In the experiment, a database can be used to get input data and store
outputs. In contrast, GRID superscalar needs the source code to be provided
(the main code and the functions code), and an IDL to describe the interfaces.
Then, using the deployment center the code can be automatically sent and com-
piled in the machines involved in the calculations. This deployment step can
be done by the user or by a Grid administrator. Once the deployment has
finished, all binaries are available on local and remote machines and then the
user can execute himself the main program. We must consider also the benefits
achieved with the run-time features described in section 3.

From the previous description we can see that each tool misses what the
other tool provides. In particular, the graphical programming language of Gri-
CoL offers a very easy way for non Grid expert users to create experiments, and
the database capability also fits into user’s needs. In GRID superscalar the de-
ployment features are very suitable for Grid environments, because installing
a program in a large set of machines can be a tedious task, and the run-time is
also a strong point of the tool, with resource management, checkpointing, and
other interesting features.

Looking more deeply into both tools, and considering that GriCoL has two
levels of work description, we came into two different possibilites of integration:

Integration at control-flow level.

Integration at data-flow level.

4.1 Control-flow level integration

In the control-flow integration, GriCoL offers solver blocks and control
blocks in order to build the experiment in a higher level vision. So at this level
the whole GriCoL experiment (solver blocks and control blocks) can be seen
as a GRID superscalar main program where each solver block is a GRID super-
scalar IDL function, and this main program should describe what the graphical
language does (i.e. a translation from graphical to programming language). A
solver block can have inside several computing modules (at data-flow level)
or even a call to a replacement module (to build a parameter sweep), but this
could be seen as different executions inside the same IDL function in the first
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case, and a call to a more advanced function which performs the parameter
sweep in the second.

The main problem we find at this level is that GriCoL only specifies control
dependencies, while GRID superscalar is based on data dependencies. The
user does not specify at this level the files involved in each solver block, but
only the order of these blocks, and conditions or loops to follow with the ex-
periment. Nevertheless, the dependencies between solver blocks could be sim-
ulated with dummy files, so GRID superscalar could detect them. By dummy
files here we mean files which have nothing to do with the computation, and
their only objective is to specify a dependence between two solver blocks.

This can be analysed in more detail. In the case of sequential parts of the
experiment, there is no problem for the control of the execution, because GRID
superscalar will take into account the dependence generated, and a second
solver block will not be executed till the first solver block has finished. So
tasks would be generated asynchronously, and a final wait will be performed.
The asynchronous task generation scheme also accomplishes the experiment’s
design in case of solver blocks that can run in parallel.

Although it is possibile to "simulate" the dependencies between different
control blocks, the integration at this level will not be natural, because of the
different focus of the control-flow level, where data dependencies are not spec-
ified. So even being able to generate GRID superscalar tasks, we do not have
any information about the files involved in every control block, thus the inte-
gration would be very difficult to achieve.

4.2 Data-flow level integration

The second option is an integration at data-flow level, the lowest level from
GriCoL. At this level, two different options could be considered:

Special computing module for a GRID superscalar application.

Generating tasks from a computing module inside GRID superscalar
run-time.

The first possibility will mean a new special type of computing module
could be created, and it would be itself a GRID superscalar program. A Gri-
CoL implementation will be responsible for executing the input and output
data sections (in charge of transferring the files where needed). This integra-
tion will allow final users to build an experiment where some computing blocks
use GRID superscalar internally, as it could be done with other special kind of
applications (i.e. MPI). The drawback is that GRID superscalar won’t have a
global view of the computation in the experiment, only inside that computing
module, so the benefits from using it would be local. Also a Grid administrator
would have to prepare all the different kinds of GRID superscalar applications
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for making them available to be used from a GriCoL implementation by doing
local deployments.

The next option in this data-flow level integration is allowing the genera-
tion of GRID superscalar tasks from a computing module. Each computing
module’s functionality could be encapsulated into a GRID superscalar’s IDL
function, and be called whenever needed. With this approach, a single instance
of a GRID superscalar run-time will have a global view of the computation
involved in the experiment, as all tasks would be generated for that single run-
time. The single run-time could be in charge of resource brokering (submitting
the tasks to the corresponding machines), and will provide the rest of the fea-
tures available in the run-time. Another particularity of this version is that the
GriCoL implementation will call to GRID superscalar run-time directly every
time a task must be generated. This is particularly suitable for a specific exam-
ple of a GriCoL solver block, namely one which carries out a simple parameter
sweep, because the implementation engine for GriCoL would be responsible
for making the calls with the different parameters in this parametric study, so
GRID superscalar does not need any extra information to deal with parameter
sweep blocks.

4.3 General integrations

From previous discussion we can see that the last option is the most suit-
able for the objectives of the CoreGRID Task 7.3, that is achieving the creation
of an Integrated Toolkit generic enough to handle several programming lan-
guages and tools, and making the Grid an invisible layer. There are still other
possibilities of integration, but orthogonal to the previous mentioned.

The first one is regarding the code deployment techniques used in GRID
superscalar. It is clear that integrating these techniques in the final solution
would be very useful for a Grid administrator in order to install the services
needed in the machines related to the experiment. Every code or simulator
implemented as a solver block could be wrapped into a GRID superscalar IDL
function, and then could be easily deployed as it is done in GRID superscalar.

And the second orthogonal integration is about the database support pro-
vided in GriCoL. The data unit for GRID superscalar is the file, while Gri-
CoL supports defining interaction with a database in order to get or store the
data needed for the experiment. This feature is important, as scientific data
is usually stored in databases. So, GRID superscalar must be aware of those
databases, and use them as a way to treat data from the different experiments
instead of working only with files.
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5. Conclusions and future work

With the proposed integration of these two tools, we achieve a unique so-
lution for several ways of programming the Grid. The first one is GriCoL,
focused on graphical design of experiments, and the second is programming
from source code, as can be done with GRID superscalar. This paper presents
an initial solution for the integration, and establishes a basic step towards the
creation of the Integrated Toolkit described in CoreGRID Task 7.3, by sim-
plifying the development of Grid applications and allowing the execution of
applications in the Grid in a transparent way.

Regarding future work, a deeper study for integrating the database support
in the final solution should be performed. Also the integration of the message
passing features specified in GriCoL could be considered.
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1. Introduction

Security policies define the types of security measures that are used and
what scope those measures have, but not how those measures are designed or
implemented. System security policies are derived from security requirements
that specify the risks and threats that must be countered. These are system-
specific policies [12] and reflect the threat environment and the security prob-
lems assumed by system designers. We aim at deriving implementable policies
from the high level requirements model. These policies are then further refined
into operational policies. At the operational stage, it is ready to be implemented
in the real systems. In this paper, we have interrelated secu-rity requirements
and security policies for grid data management system (GDMS) [9]. It is a part
of our ongoing work of a policy-driven approach to security requirements. The
implementation of this approach in the real systems requires formal derivation
of security policies from the requirements model.

This article is organized in the following manner: Section 2 presents a secu-
rity requirements model. Derivation of security policies from the requirements
model is elaborated in section 3. Section 4 presents related work and a con-
ceptual discussion. Finally, some conclusions are drawn in the section 5 along
with an account of our future directions.

2. Security Requirements Model

In this section, we present a case study of a Grid-based distributed file sys-
tem. The exponential growth in the scale of distributed data management sys-
tems and corresponding increase in the amount of data being handled by these
systems require efficient management of files by maintaining consistency, en-
suring security, fault tolerance and good performance in terms of availability
and security [7]. The problem addressed in this section is to assure fault tol-
erant and secure management of a Grid-based distributed file system. Fault
tolerance is attained by keeping an adequate number of replicas at different
nodes; whereas secure management is based on the encrypted transfer of files
between the nodes. The various parameters involved in attaining in these two
broad requirements are illustrated in this section.

2.1 Problem Statement

To understand the fault-tolerance mechanism intended for Grid-based dis-
tributed file system, consider a grid storage system shown in the leftside of
figure 1. Data elements A and B are distributed over several resources. A1

and A2 are the subparts of A; B1 and B2 are the subparts of B. Central part of
figure 1 depicts a failure situation where a node is broken down.
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Figure 1. Distributed data elements; storage site is broken down; and redistribution of
data-set.

A Data Manager will start searching resources that match the storage re-
quirements and preferences of the stakeholders of the data elements. This is a
critical phase as security negotiations and the matching of security parameters
have to be resolved besides seeking the storage capacities and other perfor-
mance parameters. The security assurances should be met before moving the
data-set to a new node. The rightside figure 1 shows that the resource broker
didn’t find a node that can host both A1 and B2 simultaneously (as was the case
before the failure occurred) and hence it found two different nodes - one for
A1 and the other for B2 - to maintain the same security level of these elements.

2.2 Goal Model

Figure 2 depicts the overall goal model of the security requirements of a
distributed file system using the KAOS (Knowledge Acquisition in autOmated
Specification) requirement engineering methodology [1]. It illustrates that the
main goal of the system is to assure that the files are always secure and avail-
able. This overall goal is refined with the sub-goals of availability and security.
These sub-goals are further refined to describe the set of auxiliary sub-goals
needed to elaborate the upper level goals. Finally a set of requirements is asso-
ciated with each refined sub-goal to demon-strate the prerequisite of attainment
of these goals. In figure 1, the goals and sub-goals are represented by thin-lined
parallelograms whereas the requirements of the refined goals are represented
by the thick-lined parallelograms. For instance, the goal file redundancy main-
tained requires move files to new nodes, detect node failures and identify new
nodes. A goal model also includes the constraints of attaining certain goals.
For example, in figure 1, the goal files readily accessible is constrained by the
data confidentiality requirement of encrypted file transfer.

2.3 Responsibility Model

By definition, the responsibility model is derived from the goal model. A
responsibility model contains all the responsibility diagrams. A responsibility



154 Achievements in European Research on Grid Systems

Figure 2. Goal Model.

diagram describes for each agent, the requirements and expectations that it is
responsible for, or that have been assigned to it.

Figure 3 contains the responsibility diagrams of the problem statement con-
sidered in this section. It assigns the responsibility of the requirement en-
crypted file transfer to the data manager. Likewise, the responsibility of the
requirement node failures detected is assigned to the data monitor that mon-
itors the object node and employs the monitor and notify operations to keep
an eye on the performance. The monitor operation satisfies the requirement of
node failure detection [5].

2.4 Object Model

The object model is used to define and document the concepts of the ap-
plication domain that are relevant with respect to the known requirements and
to provide static constraints on the operational systems that will satisfy the re-
quirements. The object model consists of objects pertaining to the stakehold-
ers’ domain and objects intro-duced to express requirements or constraints on
the operational system. There are three types of entities that can be found in
the object model: entities (independent passive objects); agents (independent
active objects); and associations (dependent passive objects).

The object model is compliant with UML class diagrams as the entities cor-
respond to UML classes; associations correspond to UML binary association
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Figure 3. Responsibility Model.

links or n-array association classes. Inheritance is available to all types of ob-
jects including associa-tions. Objects can be qualified with attributes.

2.5 Operation Model

The operation model describes all the behaviours that agents need to fulfil
their requirements. Behaviours are expressed in terms of operations performed
by agents. figure 4 shows the operation model of the problem statement consid-
ered in this section. The file transfer requirement (with or without encryption)
requires an operation move files. Likewise the requirement of identifying new
nodes requires an operation of find available nodes. Another example is the
use of monitor and notify operations for the requirement of the detection of
node failures.

2.6 Dealing with Obstacles

Obstacles are the situations where a goal, a requirement or an expectation is
violated. In such situation, the obstacle is said to obstruct the goal, requirement
or expec-tation. Dealing with obstacles allows analysts to identify and address
exceptional circumstances.
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Figure 4. Operation Model.

Figure 5 depicts the obstacles model of the problem statement considered
in this section. It shows that undetected node failures are the obstacles for the
requirement of node failure detection. Obstacles have been used for deriving

Figure 5. Obstacles Model.

security requirements previously [6]. Here we are following a complementary
approach in which security requirements are mod-elled directly.

3. Derivation of Policies from Security Requirements
Model

An important concept in distributed systems, Grids and large collaborative
networks is the concept of Virtual Organisation (VO) [3]. A VO can be seen
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as a dynamic collection of distributed resources that are shared by a dynamic
collection of users from one or more physical organisations. In the case of a
Grid-based distributed file system, a VO may consist of a set of physical sites
(nodes) providing one or more resources. In our case, resources are mainly
storage capabilities, but they can include other capabilities such as computa-
tional power.

Following Wasson and Humphrey [11], we can define three types of policies
in VOs:

VO-wide operational policies - this type of policies describes the state
of the VO as a whole and not any single node or service. These policies
are statements about the intended operational state of the VO, such as
the following:

– 75% of the data will be stored following an evenly distribution
through the participating nodes. The remaining 25% will be stored
into those nodes that have defined themselves as being of high-
storage capacity.

– The computational load of the VO is to be divided equally among
all member nodes.

This type of policies follows mainly from domain invariants, properties
know to hold in every state of some domain object [1].

VO resource policies - this type of policies describes the VO’s rules
for the behaviour of its member resources. These policies correspond to
rules that pertain to particular resources within the VO rather than across
the entire organisation. Examples of this type of policies for the case of
our system include:

– If a file contains unclassified information then encryption is dis-
abled.

– Node Ni must provide 1000GB of storage to the VO.

– Node Nj must provide the VO with dedicated compute time from
midnight to 6 am CET every day.

This type of policies follows directly from the object model, where at-
tributes (properties) associated to particular type of object are defined.
VO resource policies are also called resource usage policies, and are the
base for defining SLAs (Service Level Agreement) [10].

VO agent policies - this type of policies specifies rules for agents (users)
of the VO’s resources, from the perspective of the VO itself. These poli-
cies include permit/deny action on various possible agent operations,
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but more importantly they may specify pre-condition for any given op-
eration, as well as obligations that the agent receives for performing an
action. Example of this type of policies are:

– In a move files operation, the Data Manager agent must disable
encryption if the file-transfer path includes trusted domains only.

– The Data Monitor agent must notify the Data Manager agent when
a failure occurs in a node.

The main source of VO agent policies is the operation model, where
pre/post conditions are defined for the operations performed by agents.

As mentioned in [11], there is a connection between the various types of
VO policies: a VO-wide policy can be specified by applying the same resource
and/or agent policy to all resources/agents in the VO. For instance, if each node
in a four-site VO has a resource policy that it must perform 25% of the VO’s
total workload, this is equivalent to a VO-wide policy that all nodes will equally
divide the VO’s work. This kind of relation can be exploited for refinement
general policies into more specific ones.

3.1 Refinement of Requirements Model

We derive security policy from the requirements model and define templates
with attributes such as subjects, subject’s responsibilities, objects, object’s ac-
tivities, etc. These templates are then populated using natural language to make
it more expressive semantically. The first step in the derivation of security poli-
cies from the requirements model is to refine the requirements model so that
policies templates can be evolved from it. These templates are then populated
for the specific system.

The goal model shown in figure 2 is a concise representation of the goals
of a Grid-based distributed file system. It only provides a picture of high-level
security requirements. It needs further elaboration or the refinement for the
derivation of policy.

Figure 6 shows the refined form of the goal model shown in the figure 2.
For ex-ample, it refines the goal files readily accessible by defining a sub-goal
storage sites always connected and the operations, network faults identified and
network faults fixed, to be performed to attain this goal. These refinements en-
able the designers to identify the operations needed to attain the various goals
and they draw clear demarcation of the duties of the various actors involved
in the whole system. This demarcation helps not only in the evaluation of the
actors’ privileges but also to carryout the accountability.
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Figure 6. Refined Goal Model.

3.2 Policy Templates

Requirements templates have been used in security requirements models
[2]. Here we are following a complementary approach in which security policy
templates are developed. Policy templates are designed to formulize policy
statements. Every policy must have a core set of attributes and may have a
set of optional/additional attributes. An example set of core attributes is given
in table 1. These attribute are expressed in a high-level language (plain
text). The resulting policies are the draft version of the security policies which
require further refinement (cf. section 3.4) and subsequent transformation into
operational policies (cf. section 3.5).
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Table 1. Core attributes in a policy template

ID Policy identifier
Description Explanation of the policy parameters (optional)
Subject Active entity that manages object(s) through a set of actions
Object Passive entity that is managed by subject(s) through a set of actions
Action Task to be executed by a subject on object(s)
Authorization Privileges given to the subject to perform actions on the object.

Authorization maybe restricted by constraints
Constraint Conditions that need to be fulfilled before an action is initiated.
Event Condition that triggers the policy

3.3 Population of Policy Templates

Before populating the policy templates, crude textual policies are derived
from the requirements model. For example:

New replica of file is generated when an existing storage node is failed

Now a corresponding policy template can be populated as shown in table 2.
This is a structured representation of a policy element; however, it cannot be
implemented in this form as it requires refinement and transformation into op-
erational policies.

Table 2. A populated policy template

ID NFRG
Description NFRG: New File Replica Generation
Subject Data Monitor
Object Grid data storage nodes
Action Replica generated
Authorization Create files replica
Constraint Availability of nodes
Event Replica-host node failed

3.4 Refinement of Policies
Policy NFRG can be further refined to provide more realistic security policy.

For instance,

When the number of available file replicas becomes less than the threshold
number, the monitoring agent will generate new replica by negotiating the secu-
rity compatibility of the nodes with the file security requirements

Now the policy can be represented as shown in table 3.
The refined policies provide more details, including some object (file repli-

cas), attributes (number of available replicas), and agents (Monitoring agent).
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Table 3. Policy example

ID NFRG
Description NFRG: New File Replica Generation
Subject Data Monitoring Agent
Object Backup/unused Grid data storage nodes
Action Replica file generated on the compatible nodes
Authorization Locate compatible storage nodes and create files replica
Constraint Availability of compatible nodes
Event Number of available replicas becomes less than threshold value.

However, they still lack the description of exact techniques and technologies
to be employed in the real systems. These details are provided in the imple-
mentation policies. Implementation policies are specific to a particular system
and cannot be directly applied to other systems.

3.5 Implementation of Policies
Unlike generic policies, which are quite abstract, operational policies con-

tain specific details of a particular system. An example operational policy
derived from the same example policy could be as:

When the number of available replicas of CosmicGravitationalWaves.xls file
becomes less than ninety percent of the total number of replicas over the LCS
gird, the Grid Data Monitoring Tool will generate new replica by negotiating
the security compatibility of the nodes with the security requirements of Cosmic-
GravitationalWaves.xls file by using the Web-Service Agreement protocol

Now the operational policy may look like as shown in table 4.

Table 4. Example of an operational policy

ID NFRG
Description NFRG: New File Replica Generation policy is to be implemented

in the Laser Interferometer Gravitational-Wave Observatory (LIGO)
environment as part of LIGO Scientific Collaboration (LSC) Grid

Subject Grid-Data Monitoring Tool (DMT)
Object LSC Grid nodes
Action Replica of file CosmicGravitationalWaves.xls generated
Authorization DMT can employ Web-Services Agreement (WSA) protocol to

negotiate the security parameters and evaluate the compatibility
of the node where replica is to be generated

Constraint Availability of the nodes that correspond to the storage and security
requirements of CosmicGravitationalWaves.xls file

Event Number of available replica-host nodes becomes less than 90% of
the total number of replicas.
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This is how the policies are derived from the requirements model and then
refined and translated into the operational policies. A comprehensive set of
such policies for the example case of LSC will also consist of secure transfer
of file contents to the newer nodes. An operational policy for such data transfer
will provide low-level details such as encryption algorithm to be employed,
key-length to be maintained etc.

4. Related Work and Discussions

Tropos [4] is a methodology for modelling organizations in terms of actors,
goals, and dependencies to early requirements and provides a basis for extend-
ing early requirements to late requirements, architectural design, and detailed
design. Tropos emphasizes the need to identify organizational concerns, sep-
arate them from implementation concerns, and give them first-class treatment.
Toward this end, Tropos posits five main classes of concern: actors, resources,
goals, soft goals, and tasks. A particular requirements model will contain mul-
tiple instances of each of these classes. Properties are not represented directly
in the Tropos schema but may be captured in hard or soft goals. Tropos incor-
porate several types of concern relationship, including decomposition, means-
ends, and dependency relationships.

Our KAOS based approach offers a goal-dependency model of requirements
and takes a view of concerns that is appropriate to requirements and separated
from implementation. It also provides some downstream continuity, from re-
quirements to architectural refinement. In some contrast to Tropos, our ap-
proach adopts a more explicitly multidimensional perspective on requirements.
Conceptually, requirements in the abstract and elements in a model can be as-
sociated with different aspects. Goals are subject to disjunctive and conjunc-
tive refinement. Our approach supports multiple views of the requirements,
including refinement, operationalisation, entity-relationship, and agent.

5. Conclusions and Future Directions

In this paper, we presented our approach for rigorous derivation of security
policies from the requirements model. We carried out a case study of Grid
based distributed file system to explain our approach. For the same case study,
we modelled the VO requirements in term of resources and the actual usage
of resources in the VO. Moreover, we also linked our work with the work
done with the use of the KAOS methodology. We have already worked for the
representation of policies in a policy language [8] and now we have developed
a technique for the derivation of security policies from the requirements model.

Our future directions include the exploration the negotiation issues of the
QoS parameters in order to reach Service Level Agreements (SLA). This ap-
proach of addressing semantic modelling issues by providing requirements for
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expressing security related quality of service will turn Grid based storage sys-
tems into knowledge representation systems
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1. Introduction

Interactive problem solving environments are gaining increasing interest
from end users and finding their widespread acceptance within the Grid com-
munity. The intuitive part of such frameworks is how the complexities of solv-
ing computationally demanding problems are hidden from the end-users by
visually appealing front-ends.

Component-based programming is a suitable methodology for developing
applications and frameworks to support, to integrate with and to evolve as a
problem solving environment. In the context of component-oriented program-
ming, a framework or an application is seen as a composition of components,
on which some of them might have been developed outside the context of the
application domain. This raises, at least two interesting issues when compos-
ing an application from components: firstly, performing a strict validation on
the bindings of interfaces and semantics of the composition are important to
guarantee that the composition is functionally valid and secondly ensuring that
the overall performance of the composition is optimum. Although the first is-
sue has been relatively simplified with the modern programming languages,
the latter issue has not been largely addressed. These issues are further com-
plicated when considering legacy applications or frameworks and a number of
issues still remain to be addressed.

Further, the process of validating and optimising compositions is vital for
ensuring the scalability of a composition and thus that of the problem solving
environment.

Majority of legacy applications do not have any explicit notion of compo-
nents and performing a composition based on these legacy codes is often com-
plicated. Although functional aspects of legacy code can be componentised
without any explicit modernisation (such as rewriting in an object-oriented lan-
guage), such componentised versions do not match their counterparts in many
aspects.

We argue that when each component is augmented with additional infor-
mation, metadata, the task of performing valid and efficient compositions be-
comes relatively simplified and can be automated. Such an approach involves
appropriately specifying, publishing, extracting and correctly using the meta-
data for different operations. The (specification of the) metadata for a com-
ponent highlights all salient features of a component. This information can
voluntarily be embedded by developers in the form of annotations [6, 10, 5,
12] or by the compilers. Though compilers may capture and provide sub-
stantial amount of information, high-level, domain-specific details are better
captured by manual specification or by specialised tools. Metadata for a com-
ponent can be furnished as part of the binary or externally. For instance, for a
selected class of binaries, such as Java bytecode or .NET-based binaries [11],
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these metadata can examined or extracted using reflective introspection [18,
17]. Where such facilities are infeasible or limited, for instance when the meta-
data cannot be embedded, the metadata has to be furnished separately. Once
the metadata for a component is extracted (either through reflective introspec-
tion mechanisms or by examination of external metadata), the information can
be staged to address different issues.

However, legacy software pose many challenges in all these aspects. Lack of
support for appropriately expressing components, limited techniques for spec-
ifying and extracting metadata, and limited availability of well defined mecha-
nisms for using the metadata contribute towards this problem.

In this paper, we report our findings in addressing these issues, using a
legacy application as a driving example. Although we use the legacy code-
based case study as a motivating example to illustrate our techniques, the tech-
niques are equally applicable to modern component-oriented solutions and
across many different application domains. The key step is to find meth-
ods for specifying, publishing and extracting the metadata from legacy codes.
Techniques for using the metadata to address different issues are the same
across legacy and contemporary systems. We illustrate how we plan to use
component-specific metadata to address two interesting problems that arise
when performing component composition, especially when evolving a legacy
code-base into an interactive problem solving environment.

The main contributions of this paper are as follows:

1 We formulate methods for specifying, publishing and extracting meta-
data for/from legacy software components.

2 We present a number of complementary strategies for verifying the va-
lidity of compositional patterns.

3 We discuss our plan in using the metadata for performing efficient com-
ponent composition by using a real-world component-based application.

We consider this work as part of the advanced design methodology effort
within CoreGRID. A problem solving environment dealing with legacy sys-
tems is ideally a part of every Grid environment, and thus this joint effort is
directly addressing the aims of the CoreGRID project.
The rest of this paper is organised as follows: In Section 2 we describe our un-
derlying example, GENIE (Grid ENabled Integrated Earth system modelling)
- a component based modular platform for simulating long term evolution of
Earth’s climate. Section 3 describes the motivation for our work. The overall
mechanism for specifying, publishing and extracting metadata are discussed
in Section 4. Section 5 discusses how the metadata could be used to address
two different issues: verification of validity of composition and performing
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Figure 1. A sample configuration representing an Earth system model.

efficient component compositions. In Section 6, we discuss previous work im-
mediately related to ours and Section 7 concludes the paper with directions for
further research.

2. GENIE Application

2.1 Overview

GENIE [1] is a scalable modular platform used to produce and simulate
a range of Earth system models in order to understand the long-term changes
in Earth’s climate. The framework includes different variants of earth mod-
ules such as the atmosphere, ocean, sea-ice, marine sediments, land surface,
vegetation and soil and ice sheets. A typical Earth system model is a composi-
tion of different variants of these earth modules (or different instances of earth
modules), which are in fact different configurations suited for different simu-
lation scenarios. Each Earth module is bound to the natural laws of physics
that govern the exchange of energy, fluxes, water and other physical or biogeo-
chemical tracers. Further, each Earth module uses their own module-specific
computational models and module-specific data representations for represent-
ing boundary surfaces where the exchanges occur.

Figure 1 shows a sample Earth system model (or configuration). The model
uses different instances of each of the Earth system modules (instance types
are shown within parenthesises). Interactions between different (instances of)
Earth modules are shown by arrows. In addition to Earth system modules, a
configuration may also use modules to represent exchanged or accumulated
physical or biogeochemical tracers (for example, the surface flux module in
Figure 1).
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2.2 The Past, the Present and the Future

In the original implementation, the GENIE was implemented in pure
FORTRAN without any explicit notion of components and services. The frame-
work included a driver module for orchestrating the execution, inter- and intra-
module communications and data exchanges for a given configuration.

At present, these earth-modules have been componentised. To facilitate in-
teroperatability between different language-specific implementations and to
expose these components on the Web services front, these components have
been wrapped through Java interfaces [13]. With these wrappers in place, the
overall composition of these components (and thus different earth system mod-
els) may include remote components and remote services.

Currently, the simulation of a given model could be submitted, managed and
executed on the Grid using the Globus Toolkit [7] or Condor [16].

In the context of Grid, problem solving environments or problem solving
portals are finding broader range of audience including scientists. Evolving
GENIE as a, or as a part of a portal is an interesting challenge. This in-
cludes creating component repositories, building automated submission, man-
agement, scheduling and execution mechanisms and building/supporting visu-
alisation platforms. In addressing this challenge, although we could potentially
make use of existing techniques to handle different issues which may arise
within, there are still issues need to be addressed. We use one of these issues,
discussed in Section 3 as a key motivation for this paper and to illustrate our
techniques.

3. Motivation

One of our goals in improving the GENIE platform to evolve it as a portal
or as a part of a portal where end-users could visually compose a simulation
model. Such a visual composition will include different visual components
representing various earth modules, which may be Web services or native com-
ponents. Each component is permitted to have different variants (with varying
models, different parameterised configuration, costs, locations, performance
and interfaces) whose properties can be configured, at least partially. In effect,
the overall properties of a composition, i.e. the configuration of the model, can
be configured by end-users. There are at least two immediate issues arising
in supporting such user configurable simulation models. Firstly, the validity
of a composed simulation model should be verified against the law of physics,
or more specifically against the domain-specific facts of Earth system mod-
elling. Secondly, the composition should be made efficient in terms of cost,
performance and usage of resources.

The task of verifying the validity of a composition requires inherent knowl-
edge of components (such as applicability information, parameters, their
ranges, patterns of interactions and other similar information) and requires
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substantial exposure to the domain-specific details of Earth system modelling.
Although it is possible to embed these information as part of the applica-
tion, such an approach would prevent the scalability issue to be handled effi-
ciently, i.e. components cannot be added or removed dynamically. Decoupling
the platform from possessing any component-specific information (component
metadata) leads us to furnish the same metadata through an external source.
However, in the current setup of GENIE, components cannot carry any form
of metadata on their own.

Secondly, when composing components to build a model, opportunities may
arise for improving the efficiency of compositions. Efficiency of a composi-
tion is a multivariate function. However, we restricted our cost model to have
only one parameter, namely runtime (performance), to simplify the process.
Opportunities for optimisation may also arise during runtime and using the
metadata may result in significant improvement in performance. For example,
performance is highly correlated to the location of Web services and choosing
a service whose proximity is closer to the client has desirable advantages on
performance.

A closer inspection of these requirements show that if each component is
augmented with metadata, it is at least partially possible to overcome some
of the challenges. We discuss the nature and specification of the metadata in
Section 4 and our means to exploit the metadata in Section 5.

4. Metadata for Legacy Components

The specification of the metadata should permit information to be equally
expressed across different components while permitting salient and domain-
specific features of components to be highlighted. Towards this, the metadata
should capture any implementation-specific and composition-specific informa-
tion and details relating to the domain of the application. The organisation of
the metadata, in terms of management and usage, is also equally important to
the contents of the metadata. We follow the organisational structure outlined
in [17] to organise our metadata. Metadata related to components are exter-
nally supplied as discussed below (in contrast to the approach of being supplied
by the binary itself).

In the case of legacy components, extracting metadata from legacy binaries
is a difficult process, unless such metadata have been embedded within the
components and explicit extraction is facilitated as in [10], but at higher-level.

In our case, we manually specified the metadata for each componentised
version of the legacy code. The metadata is then associated to the match-
ing component and placed in an associated repository. Service enabling our
componentised versions results in additional advantage of associated meta-
data being served as part of the services contract. When not accessed through
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services, the external metadata is supplied by explicit method calls produced
by component wrappers.

The exact information to be captured/specified can be divided in three dif-
ferent groups: basic component-specific information, domain-specific infor-
mation and experience-specific information as below:

Component-specific information specify the interfaces and interactions to
the component such as inputs, outputs, their types and other composi-
tional information (such as containment relationships and parent mod-
ule information). Additional information, which are specific to legacy
components, can also be included as part of this section.

Domain-specific information are often in the form of constraints, specifying
valid ranges, valid values, valid units and additional conditions which are
fully derived through the knowledge of the component.

Experience-specific information are accumulated across runs, such as per-
formance results on different platforms, or for different configurations.

The metadata at different levels may overlap and then extended across com-
ponents, wherever applicable, to cover compositions. For example, in the case
of composite components, which is a form of composition, the metadata will
cover each component in the composition.

5. Staging the Metadata

The next step is to appropriately use the metadata to address different prob-
lems. In our case, we are considering two different issues: model validation
and efficient composition, which are discussed in the following sub-sections.

5.1 Model Validation

In an Earth simulation model, different instances relating to different Earth
modules may coexist. This means, for instance, there may be two different
atmospheric models that may coexist inside a single simulation model, per-
haps to represent different atmospheric conditions over different regions of the
Earth. Each instance interacts with each other for exchanging physical and/or
biogeochemical tracers, specifically through their ports. Since different in-
stances may share common interface properties, validating interface-specific
details alone may not be sufficient enough to guarantee that the model is valid.
We use the different parts of metadata in the process of validating a model.

Physical units of ports: Wherever applicable, each physical tracer (such
as speed, energy) and/or biogeochemical tracer (such as CO2, dust, Al-
kalinity) is related to a unit (such as K, ms−2). When verifying a
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coupling between instances of different modules, their physical and bio-
geochemical couplings need to be verified to ensure that the connections
between tracers of coupled modules are valid.

Resolution/Dimension of computational models: As outlined earlier,
each component may be configured to use a specific computational
model, for instance the resolution of spatial grids and/or dimension of
the spatial grids. In many cases, these models do not match and this
issue is appropriately handled depending on the context. For example,
when spatial grids are different, tracer values are appropriately interpo-
lated/extrapolated. However, this often comes with correction factor to
guarantee the conservation of energy/fluxes. Validating whether a cou-
pling leads to large deviation in values or corrections may result in veri-
fying whether there are violations of physical laws of conservation.

Number of instances: An Earth module may mandate an upper or lower
bound on number of instances that may be present in a model. Verify-
ing that the instances do not violate this requirement, provides an extra
scoring.

Value range: A possible range of values that an input/output tracer can
assume is specified as part of the metadata, for example value range
for temperature. Depending on the model, the value range may help in
arresting invalid models at pre-simulation stage or during simulation.

Existing models/couplings: Capturing and recording outcomes of mod-
els and couplings as part of the metadata (as part of the experience-
specific metadata) may help in using experience-specific data in iden-
tifying invalid models/couplings.

Interface- and type-specific information: In addition to existing de-
tails, interface- and type-specific details of coupled tracers need to be
matched.

We are continuing our effort in identifying more domain-specific metadata
parameters to be used against validation of simulation models. An added ad-
vantage of using the component metadata is that it partly guarantees that the
application (or component) is free from value specific logics.

5.2 Performance Optimisation

An Earth system model is simulated for a long period, for instance for multi-
millennial periods, and it is both time consuming and computationally inten-
sive. Although each module may be optimised for best performance (or for
other objective functions), the overall composition cannot be pre-optimised.
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One of the reasons for a composition to yield sub-optimal performance is that
components are not aware of the overall behaviour of the composition. The use
of the metadata in performing efficient component composition has previously
been demonstrated by many authors [10, 4]. The key idea in our approach is
to tailor the metadata to include domain-specific and experience-specific in-
formation in addition to the component/interface-specific details. We use the
following metadata for resolving key performance issues.

Location/type of component: As outlined already, a composition may
include locally available, native components and remote Web services.
Since, the communication latencies are highly correlated to the overall
performance of the composition, wherever applicable, locally available
components should be preferred to Web services and services in close
proximity to services with high latencies. However, this issue may be
further complicated if a second optimisation parameter is added, such as
cost.

Computational models: Some of the computational models of a given
component may have matching computational model such that they all
yield almost similar results but exhibiting significant difference in per-
formance. For example, when simulating maximum Atlantic meridional
overturning circulation (MOC), resolutions of 36×36×8 and 72×72×16
for oceans, results in similar MOC figures for higher flux corrections.
Further, the choice of a faster resolution may be justified by subsequent
interpolations/extrapolations for corrections.

Data from past runs: Instance of some Earth modules always have
similar (or constant) startup or input values. Wherever possible, the past
data can be used to save computational time. Very frequently, similar
simulation models may overlap in time period and thus the data. For
instance, exploring the stability of the ocean thermohaline circulation
(THC) is very repetitive in nature and it is possible that the simulation
span to overlap with an existing (similar) model.

We are investigating the issue of staging these metadata to improve the over-
all performance of simulation models, THC in particular.

6. Related Work

Problem solving portals, modular visualisation environments and work-flow
editors help exploring the problem and/or solution space by providing an ab-
stract view of the interaction between associated modules [8, 4, 2]. Our work
is also partly aligned with providing a similar abstraction while addressing the
issues discussed in previous sections. However, one of the key differences in
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our work is that we make an extensive use of component- and domain-specific
metadata in the process.

The Bespoke Framework Generator (BFG) [14] is a prototype implemen-
tation of the Flexible Coupling Approach (FCA) and partially being used as a
coupling framework within the GENIE application. BFG permits rules relat-
ing to compositions to be built and wrapper codes to be generated. Our work
has similar goals and results to theirs but we make extensive use of metadata
from which the composition rules are inferred. Our work is more suitable in a
scalable environment where exact rules are difficult to specify, especially when
nature of evolving components are not known in advance. Further, our meta-
data supports specification of rules where necessary but does not depend upon
on them for its operations. In addition to this, our work exploits the runtime
correlated metadata to seek optimisation opportunities.

The THEMIS framework [10] demonstrates how component specific meta-
data can be used to perform cross component optimisations. Using component
metadata for optimising resources and applications in the context of Grid is
considered in [9]. Organisation of metadata for component-oriented compo-
sitions is discussed in [17]. Our work utilises some of their principles and
techniques in advancing the solutions. We also make extensive use of some or
part of the wrapping techniques outlined in [5, 12, 3]. However, our implemen-
tation of wrappers also function as part of the Web service so that the metadata
can be published as part of the Web service.

The OASIS framework [15] offers a component model description and
configuration mechanism for coupled models. The framework is specifically
aligned towards issues related to climate earth system modelling. Although
it proposes earth-specific metadata, the metadata does not capture the details
which are relevant to our work.

7. Conclusions

In this paper we have highlighted two issues that arise when performing
composition of components, namely validity and efficiency. We also discussed
the importance of addressing these two issues both in the context of legacy
applications and modern component-oriented programming. We placed a par-
ticular emphasis on providing additional information related to components,
which we call metadata, and using the same to automate or semi-automate the
process of component composition.

Carefully specifying the metadata such that it captures the component and
domain-specific information leads to potential benefits, which we outlined in
Section 5. We used a legacy application as a driving example to illustrate the
details and nature of the metadata for components based on legacy code. We
also highlighted our plans in staging the metadata for validating the models and
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improving the efficiency of models. These two aspects are crucially important
for guaranteeing the GENIE platform becomes a scalable problem solving en-
vironment by permitting extensive, yet valid and highly performing, range of
models to be composed.

However, we discussed only a subset of the issues arising in performing
compositions of components. A number of interesting issues remain to be
addressed.

Currently, we do not capture or specify any information as part of the
metadata to parallelise the simulation and to improve the performance.
This issue is partly addressed and included in the BFG framework through
rules. However, we intend to take a different approach where the paral-
lelism can also be inferred from metadata if not specified explicitly.

The experience-specific metadata may dramatically increase in size and
may affect the overall performance. We plan to separate this aspect of the
metadata in a separate consolidated storage (such as a common database).

Manually specifying the metadata for legacy components is a complex
process. Diminishing or ageing skills in legacy systems, unavailability
of up-to-date documentation, willingness of new programmers to get a
deeper understanding of the code are some of the contributing reasons
for the difficulty in keeping pace with the changes. However, fortunately,
GENIE is based on FORTRAN code-base and it is not entirely impos-
sible to cope with the ageing code exposure — if FORTRAN code is
assumed to be not in parallel with modern programming languages.

One of the interesting outcomes of using the metadata is how the appli-
cation or component becomes free from value-specific logics. It is pos-
sible to take an aggressive approach here to migrate more issues into the
metadata from the component/application. For instance, computational
models of components may consist of or may have access to alternative
solvers/smoothers. This can be captured inside the metadata. However,
such an aggressive approach may increase the overheads in handling the
metadata. There is an optimum amount of information that can be passed
as metadata and rest in the application/component logic. It is interesting
to observe the optimality and defining metrics for such optimality.

As mentioned in Section 3, efficiency of a composition is a multivariate
function. We simplified the model and assumed that performance is the
primary concern. However, in a real setup, factors such as cost may also
need to be considered.

At present, we are investigating means for unifying and generalising the
metadata specification across different components and across the whole
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domain. We are also implementing the framework for extracting and stag-
ing the metadata in performing compositions. We are certain that the proposed
approach could be used to solve associated issues in other domains of applica-
tions and in contemporary component-based systems.
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1. Introduction

Grid environments integrate diverse resources and services. Also, the num-
ber of nodes in a grid might be highly variable as, for example, in the LHC
Computing Grid (LCG) [26]. Such heterogeneity and churn contribute to the
complexity of a grid environment, leading to some degree of unreliability. Ge-
ographic dispersion, along with administrative site autonomy [10] further con-
tribute to complexity and thus unreliability. Performance variabilty and sporadic
unavailability of the underlying networks complicate matters even further.

Obviously, with a large number of components (both hardware and software)
involved in the execution of a grid application, the overall probability that at
least one component is (temporarily) non-functional is increasing rapidly. In
traditional systems, such failures are flagged as fatal and the application will be
stopped, relying on a re-start after the problem will have been fixed.

In a large grid system, this is not a feasible approach as failures happen too
frequently while error diagnostics might not be possible at all, either because
of the overall system scale, or because logging information might be available
only locally at the system that has failed.

This scenario is asking for a different approach to application execution,
where detection and circumvention of error conditions become an integral part.
In previous work [17], we have identified the need for a persistently running
service that is keeping track of an application’s life cycle, from submission by
the user to successful completion of its execution. In this paper, we present
such a service.

In Section 2, we investige failure types and fault-tolerance mechanisms.
Design and implementation of our reliable execution service (RES) will be pre-
sented in Section 3. Section 4 describes how RES can be used for executing
application workflows from the GRID superscalar system. Section 5 concludes.

2. Failures in Grid Environments

Typically, a user submits his application via a resouce broker to a machine
in the grid. Before the job is started, required input files must be pre-staged
(copied to the execution host) and afterwards, output files have to be post-
staged to the user. Failures might happen during many stages of that process:

1 Execution services failure. Services executing the application such as a
resource broker or a local scheduler might misbehave/crash or might not
be able to satisfy the job requirements.

2 Local environment failure. The application might fail locally on the se-
lected machine, for example because of insufficient disk space.

3 Resource failure. A resource might fail that the application depends
upon, like network outages or unresponsive services.
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4 Application specific failure. The application might fail due to a problem
with its code, like causing memory segmentation faults, numerical errors
or deadlocks.

Failure (1) of a resource broker or a scheduler might be masked by trying to
start a job on a different site. A failure of grid job manager can be circumvented
by submitting directly to a cluster, provided we can discover hosts belonging
to a grid. Failure (2) can be masked by restarting a job on a different host. To
discover failure type (3), special failure detection and monitoring services are
necessary [6, 9, 13, 16, 21]. Only failures of type (4) should not be masked, and
feedback about their occurrence should be provided to the user. Fault-tolerance
(FT) mechanisms can be implemented on different levels:

Application-level FT. Here, fault tolerance is built directly into the appli-
cation code. While this approach can provide flexibility and efficiency by
exploiting application-level knowledge, it is often perceived as cumbersome
by application programmers [19]. Runtime environments like the GAT [1] or
Satin [24], or fault-tolerant versions of MPI [8] can lower the burden on the
programmer.

Multi-layered FT. Here, each layer handles the errors within its own scope,
pass others up the hierarchy [23]. This approach simplifies higher-level layers,
however, at the expense of performance penalties as higher layers themselves
can not adapt any more [18]. Building FT into each component in a grid is also
not practical, due to scale and diversity of components.

External FT services. The grid environment might offer an automatic fail-
ure detection service which basically allows building more intelligent fault-
tolerant services on top of them. Such services [6, 21], however, suffer from
poor integration with application execution and from the necessity to be ubiq-
uitously deployment in a grid.

2.1 Related Work

Phoenix is detecting failures by scanning scheduler log files [18]. It can
diagnose execution and data transfer errors. Phoenix can follow different, user-
definable failure-handling strategies. Applicability of Phoenix is limited to
those systems of which log files can be interpreted.

Application failures can also be handled on workflow level [14]. Here, in-
dividual tasks might be run alternatively should another task fail. The system
in [14] relies on information from the resource broker only, but can also be
combined with heartbeat monitors [13]. The execution service for the NASA
Information Power Grid [20] is executing interdependent tasks, restricting er-
ror diagnosis to application exit codes.

The Globus GRAM service [25] is frequently criticized for not returning ap-
plication exit codes, returning its own codes specifying certain types of failures
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instead. Condor-G [11] uses the GRAM protocol and detects and handles re-
source failures to provide "exactly once" execution semantics. Unfortunately,
this mechanism can not be used without deploying Condor-G as the grid mid-
dleware.

The fault tolerant manager proposed in [3] supervises the execution of jobs
and in case of a failure a decision maker decides on a recovery scenario. In-
terestingly, the proposal counts a dramatical decrease in the application perfor-
mance as a failure, too.

Some systems focus on failure detection only. The Heartbeat Monitor
(HBM) [21], is an unreliable, low-level fault detection service for a distributed
system. The service bases on unreliable fault detectors [4] which try to dis-
cover which system components (machines or processes) might have failed
and notify the application of that fact. Whether to trust this information, how
to interpret it, what to do about it, is left entirely to the application. Défago
et al. [6] improves performance and scalability of this scheme by introducing
hierarchisation and gossipping between monitors.

However, those services are lower-level, they only inform that they suspects
that a component has crashed. The application should decide whether and how
to recover from the failure what can be non-trivial, especially that the heartbeat
monitors do not know the failure root cause. In the following, we describe a
service that implements a rather comprehensive approach to failure detection,
diagnosis, and resolution.

3. A Service for Reliable Application Execution

In previous work, we have identified the need for a persistently running ser-
vice that is keeping track of an application’s life cycle, from submission by the
user to successful completion of its execution [17]. Such a service is supposed
to become an integral part of a grid application execution environment based
on a mediator component toolkit [5]. We will now present design and imple-
mentation of RES, our Reliable Execution Service, that has been designed to
fulfill this purpose.

3.1 Design objectives

The Reliable Execution Service (RES) is a permanent service providing re-
liable execution of applications submitted to the grid. Permanence means that
the service runs all the time. Reliability means handling transient failures trans-
parently to the end user. The user should observe only the very application
errors, with the exception of permanent grid environment failures. The RES
service will be designed to meet the following requirements:
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Application feedback. In an ideal case, there should not be any require-
ments posed on the executed application. However, having application feed-
back enhances greatly failure detection capabilities and enables application
specific debugging and logging. Therefore, for both service-aware and un-
aware applications, the reliable execution functionality should be offered. Ad-
ditionally, an application can talk to the service, for example requesting an
application-specific failure or sending a message to the user.

Failure detection. The service should detect submission and execution
problems. After the execution is done it should properly detect the exit code
and intercept uncaught exceptions whenever possible. If a monitoring service
is available, the service might monitor hosts executing the application, the ap-
plication process or resources that the application depends on.

Failure handling and recovery. The service should offer diverse failure
handling strategies. Checkpointing applications must be supported.

User influence. The user might influence failure detection and recovery
schemes by specifying policies. Policies should be separated from the applica-
tion code.

Workflow-level and task-level fault-tolerance techniques. The service
will not implement task-level fault tolerance techniques, such as alternative or
redundant tasks (see Section 2.1). However, the service’s direct API should
allow a developer to implement those techniques easily.

Batch-mode application execution. After submitting a job, the user can go
offline and access recorded job status information at a later time. Job history
is kept during and after job completion. The user should not have to examine
output files to check the application status or to see if it exited correctly.

Minimizing administrative overhead. The service should be designed so
that special privileges, accounts or certificates are not necessary. The service
should use the deployed security framework and require users to delegate their
rights for the service to act on their behalf. Also, there should be no need to
install anything on each machine in the grid.

Preventing information loss. Masked grid component failures should be
transparent to the user but not to grid middleware or to the administrator.
Records of failure occurrences should be stored persistently, to allow other
components to adapt their behaviour.
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Dependability. The service should be able to sustain a crash of its hosting
machine. When the machine is back online, the service should recover and
re-acquire jobs activated before the crash.

Portability. The service should be independent of the specific middleware
installed on the grid, the hosting machine platform, the language-binding of an
executed application and the environment of targeted machines. The service
acts as a grid meta-scheduler (is able to choose a cluster to run a job), so it has
to encapsulate specific grid information at least on clusters belonging to the
grid. The encapsulation should be clearly separated from the service code and
it should be possible to discover this information dynamically.

Job model. The service is intended for computation intensive, long running
applications (long here means for example more than an hour). The application
file staging model is simple as well – it consists of two lists of files to pre-
and post-stage. Additionally, for checkpointable applications, the application
specification might contain a list of names of checkpoint files and a checkpoint
files repository location.

3.2 Service design

The architecture of the Reliable Execution Service is presented in Fig. 1.
The most important thread of control in the service is the JobController. It
handles users’ requests, activates jobs and controls them. It saves execution
metadata to the JobRepository. Waiting jobs are submitted to the grid via the
GATEngine [1], which chooses an appropriate resource brokerage service to
submit the job to.

Job’s Executors are threads of control active on grid machines. They su-
pervise the execution "locally", give feedback to the service and mediate com-
munication between the service and the application. After the job is done, its
Executor detects the exit code and uncaught exceptions, sends a JobDone sig-
nal to the service and exits. The service verifies the execution. In case of a failure,
the failure agent diagnoses the problem, classifies it into permanent or transient.
Permanent failures are reported to the user in the way that shields the user from
middleware and hardware details. For transient failures the agent comes up with
a suitable recovery scenario executed then by the JobController.

In case of a failure of the machine hosting the service, the service itself might
stop working. However, it is designed such that the previously activated jobs are
reacquired, even though control over them is weakened, as connections with the
resource broker are lost that were created when the jobs had been submitted.

Service behaviour such as the job execution planning phase, failure diag-
nosis and execution verification might be influenced by users policies, service
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Figure 1. The Reliable Execution Service architecture.

self adaptation based on failures occurrence rates and additional information
received from monitoring or information grid services.

As the service is executing on the behalf of its users, it has to use their re-
spective credentials. Our current implementation is using the Globus MyProxy
Credential Management System [12]. Using MyProxy, the user can hand over
temporary credentials to the RES service, allowing RES to execute the appli-
cation with the user’s credentials. Other security contexts, supported by the
GAT engine, could be also used here.

However, delegating POSIX (UNIX) file permissions could not be done eas-
ily. Therefore, the user must make sure that the service can access files which
are to be pre-staged: the service might be run by a privileged user or the files
might be made readable to the appropriate user group or to everybody. An
appropriate solution would be accessing files through a grid file system ab-
straction, as anticipated in [15], with proper grid-wide file permissions.

3.3 Application wrapping

Applications are not executed directly but they are wrapped inside the Ex-
ecutor which is responsible for the following tasks:

1 Controling the application execution. The wrapper signals to the ser-
vice when the execution begins, runs the application and after it is done,
reports this fact to the service.

2 Local monitoring of the application execution. During the execution the
wrapper sends heartbeats to the service. When the job is done, it detects
the exit code and intercepts uncaught exceptions if possible.

3 Talking to the application. The Executor mediates the communication
between the application and the service. The application might send
signals, which are interpreted by the JobController according to the
user’s policy. The signal might be fatal, i.e. describing a failure which
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occurred during the execution, or informative, for example debugging
and logging signals.

The information received from the Executor might be more accurate and more
timely than information from the resource broker which does not control the
application directly. Also this is the only way to correctly detect and propagate
the exit code of the application.

Two kinds of Executor’s were implemented: a GenericExecutor that can
execute any application, and a JavaExecutor that can execute only applica-
tions implemented in Java but provides more functionalities for them. Com-
munication with the service is done using Java RMI. As executed applications
might be developed in any programming language, it was not trivial to imple-
ment a generic way to talk to the application. As the JavaExecutor runs the
application using the Java’s reflection mechanisms, it talks to the application
through normal local method invocations. However, the GenericExecutor
talks to the application using sockets. To ease the application programmer’s
task, we have implemented simple language-binding libraries that a user can
link to his programs, for in C/C++ and Python languages. If the application is
only available as a binary program, it cannot be modified to talk to the Execu-
tor. In this case, the Executor can only handle return codes.

Fig. 2 shows some example code of an application that uses the RES pro-
gramming interface to try an alternative algorithm should the first one fail.
The code first tries a supposedly fast implementation. Should this fail, another
(possibly slower but less resource hungry) implementation is tried out. This is
an example where certain application-level failures can be circumvented using
RES.

3.4 Failures detected by the service

The most important detected failures, related to the fact that the application
executes in the grid environment, are as follows:

Failures prior to the execution. Before the execution on the target ma-
chine takes place at all, numerous types of failures must be anticipated
such as pre-staging failures, incorrect job description, security failures
and multiple types of submission failures – inability to locate the ser-
vice, service misconfiguration, not enough resources to execute the job,
authorisation/proxy failure, network connection failure, etc.

Failures during the execution. Besides application specific failures such
as abrupt termination, throwing an uncaught exception or a failure re-
quested by the application, failures might be caused by other factors
such as the inability of the Executor to start the application, security
issues, problems with talking to the application or the Executor internal
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boolean submitAndWait ( R E S S o f t w a r e D e s c r i p t i o n sd , RESUserPol icy
p o l i c y ) {
/ / L o c a t e t h e s e r v i c e
RemoteRES r e s = R E S S e r v i c e L o c a t o r . f i n d ( ) ;
/ / Submi t t h e j o b
RESSubmiss ionResu l t s r = r e s . su b m i t ( sd , p o l i c y ) ;
/ / R e t r i e v e t h e r e s u l t i n g j o b i d
RESJobId j o b I d = s r . g e t J o b I d ( ) ;
/ / Wai t u n t i l j o b i s done
RESQueryResul t q r = n u l l ;
whi le ( ! ( q r = r e s . que ry ( j o b I d , t rue ) ) . i sDone ( ) ) ;
/ / Check i f j o b i s done s u c c e s s f u l l y
re turn qr . i s D o n e S u c c e s s f u l l y ( ) ;

}

/ / Prepare s o f t w a r e d e s c r i p t i o n s and u s e r p o l i c i e s f o r bo th a l g o r i t h m s
/ / Try t h e f i r s t a l g o r i t h m
i f ( ! submitAndWait ( r e s S D _ f a s t , u s e r P o l i c y _ f a s t ) ) {

/ / The f i r s t a l g o r i t h m f a i l e d , t r y t h e second one
submitAndWait ( resSD_slow , u s e r P o l i c y _ s l o w ) ;

}

Figure 2. Example code for submitting alternative tasks based on given errors.

problem which should not – but might – occur and in this case should
not mislead the user. The service is capable of detecting an abrupt ter-
mination of the application basing on the heartbeats received from the
Executor. When detecting missing heartbeats the service tries to differ-
entiate between crash of the job process or the Executor, a crash of the
machine executing the application, or a transient or permanent network
outage.

Post execution failures. After the job execution, the service anticipates
post-staging failures and verifies the execution according to the follow-
ing criteria: heartbeats reception, feedback signals reception, the exit
value, presence of output files.

3.5 Recovery techniques

When the FailureRecoveryAgent detects a failure, it must come up with a
suitable recovery scenario to resolve the problem. As we cannot prevent grid
resources from failing, what we can basically do at the task level is restarting
the application in the way that diminishes the probability of the failure recur-
ring. Therefore we mask transient failures using various types of retry tech-
niques: retrying on a different cluster (what provides hardware and software
diversity), retrying on a machine with certain characteristics, such as a faster
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processor, more disk space, more memory or with more network bandwidth
available or restarting after a certain time.

Another technique used is checkpointing. It can be used only if the
application is developed so that it can write checkpoints or the grid provides
system-level generic checkpointing. The stored state information should be
enough to restart the process, even on a different resource. This technique
is useful for processes which involve significant data manipulation and are
unstable or cannot finish data manipulation in a single run.

If the application fails a certain number of times, the failure must be consid-
ered permanent. The application failure is reported back to the user. Also
in certain cases Executor failures might be worthy to ignore, as we may still
hope that the application executes successfully.

To select a proper recovery scenario, artificial intelligence techniques might
be used, to base the decision also on the job history and overall failure occur-
rence rates. In the current implementation the history of the job is not taken
into account when deciding on a recovery scenario. Misbehaving clusters are
detected when failure occurrence rate is near 100% and jobs are not submitted
to them provided there are other resources to use.

3.6 Evaluation

The service has been implemented according to the design shown in Fig. 1.
We have evaluated it its functionality with a fault-simulating application kernel
that we had pre-set to crash with a given probability (between 10 and 20 %).
We used up to 100 worker tasks running the fault-simulating application kernel
and up to 32 compute nodes. When a worker crashed, it was automatically
restarted by the service, transparently to the application. All of the workers
completed eventually in spite of the frequent crashes. In a more complete set
of tests, we have verified that RES is able to handle the following kinds of
failures:

User-related failures: authorisation failures, program binary unavailability,
non-zero exit code, pre staging failures due to unavailable files or target
directories, catching the application’s exceptions, application timeouts,
handling of checkpoints.

Grid-related failures: crash of the Executor process, transient network out-
age, host crash or permanent network outage, cluster/scheduler misbe-
havior, crash of the RES service itself.

In a separate test, we have evaluated the runtime overhead of submitting
jobs via the RES, compared to direct job submission. Fig. 3 shows the results,
obtained on the VU cluster of the DAS-2 [7] system. We were experimenting
with an application kernel performing prime factorization, written in Java, and
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Figure 3. Job submission overhead caused by the RES.

parallelized as a simple task farming program. The program was submitted via
the prun job submission tool installed on DAS-2. The RES contacted prun via
the Java-GAT. In total, 32 parallel jobs were created per application run. The
graphs in Fig. 3 report speedups, relative to sequential execution on a single
node of the system.

The purpose of Fig. 3 is to verify the overhead imposed by the RES service,
ranging from one up to sixteen worker nodes. In fact, the figure shows two
comparisons. The first pair of lines to compare to each other are the ones
labelled “1prun vs. overall time” and “32prun vs. overall time.” The lines
compare submission of the 32 tasks, either as a single job, or by 32 separate job
submissions, both to the RES. Notably, differences are only small. The second
pair of lines for comparison are “32prun vs. normalized time” and the perfect
speedup. Here, the runtimes have been normalized by removing the actual
scheduling and waiting times of the underlying prun system. What can be seen
is that speedups are (almost) perfect, indicating that RES introduces hardly any
runtime overhead to the overall job submission process, while adding failure
resilience.

4. Case Study: Reliable Execution for GRID superscalar

GRID superscalar [2] is a grid application programming environment, pro-
viding a simple programming model. Its runtime system is parallelizing
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sequential code, based on the functions defined to be run on the grid, and
the data dependencies between the calls in the main program to those func-
tions. The user provides a main program, an IDL file describing the interfaces
of the functions which will be executed in the grid, and the function imple-
mentations. These can be either coded directly, or wrapped calling to external
binaries or scripts. The system has been ported not only to grid environments
(using Globus [25] and Ninf-G [22]), but also to work inside clusters with
ssh/scp, and as a programming model for multi-core processor platforms, go-
ing beyond the boundaries of grid computing.

Recently, GRID superscalar has incorporated a fault-tolerance mechanism
for which the user specifies timeout values for individual functions. When
a timeout is reached, the runtime system assumes a function to have failed,
and tries to cancel and resubmit it. In combination with the RES, GRID su-
perscalar would only need to consider the application-related failures. Also,
GRID superscalar can define suitable policies for specific failure scenarios,
and, because the RES relies on the GAT framework, it indirectly offers a stan-
dard interface for using different grid middlewares transparently. In general,
the RES handles the vast majority of grid middleware related errors, and thus
simplifies GRID superscalar’s task. In addition, the RES provides a uniform
interface for worker tasks to report their exit status to the master process, obso-
leting the current file-based mechanism that had been introduced to circumvent
limitations of current middleware.

GRID superscalar’s code generation and deployment techniques perfectly
fit the RES framework. Before running an application, different binaries are
generated, one for the master part, and several for the worker machines. To the
RES, these binaries are like independent applications which must be invoked,
along with their input and output files, while GRID superscalar keeps track
about all of them, because they belong to the same application.

The checkpointing capabilities of the RES system are focused to offer an
intra-task checkpoint mechanism. This is very suitable to the GRID superscalar
runtime, which already offers checkpointing techniques, but based on an inter-
task approach. So, the combination of the checkpointing inside a task offered
by RES, and the checkpointing between tasks offered by GRID superscalar will
build a robust framework for the execution of GRID superscalar’s applications.

When submitting a job, GRID superscalar maintains information about file
locality for input files, aiming to reduce file transfer overhead. This implies
that part of the job submission policies (provided by GRID superscalar to RES)
have to give preference for execution hosts with good locality of input files.
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5. Conclusions

The large number of components being involved in the execution of a grid
application raises the probability that at least one of these components is (tem-
porarily) non-functional up to a level where errors can not be neglected any
more. This observation calls for an application execution mechanism that has
failure detection, diagnosis, and handling as intrinsic functionalities.

We have explored the possible causes of application execution errors, and
existing approaches to handle them. We have presented the design and imple-
mentation of RES, our Reliable Execution Service for grid applications. We
have presented a case study in which the GRID superscalar system reliably
executes jobs via the RES service, and how the service also helps GRID su-
perscalar to build its own fault tolerance policies. The combination of check-
pointing techniques avaliable in both environments creates a strong reliable
framework where the computation already performed will be hardly lost.

RES is experimentally being deployed on the DAS-2 system. While we are
currently gaining further experience with the system, future work comprises
support for parallel jobs as well as more sophisticated failure resolution strate-
gies, possibly based on AI techniques.
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1. Introduction

An important role in any distributed system and especially in Grid environ-
ments is played by performance monitoring tools. This is due to the fact that
performance information is required not only by the user to get information
about the infrastructure and the running applications, but also by most Grid
facilities to enable correct job submission, data access optimization services,
and scheduling. The complexity and dynamics of Grid environments makes
that various entities including infrastructure elements, applications, middle-
ware, and others, need to be monitored and analyzed in order to understand
and explain their performance behavior on the Grid.

The GRID superscalar (GS) [1], an approach to Grid computing, supports
the development of applications, in a transparent and convenient way for the
user. Its aim is to reduce the development complexity of Grid applications to
the minimum, in such a way that writing an application for a computational
Grid can be as easy as a sequential program. The idea assumes that a lot of
applications are based on some repeating actions, e.g. in form of loops. The
granularity of these actions is on the level of simulations or programs, and
the data objects will be files. The requirements to run the sequential-fashion
application on a Grid are expressed as a specification of the interface of the
tasks to be executed on the Grid and calls to GS interface functions.

GS provides an underlying run-time environment capable of detecting the
inherent parallelism of the sequential application and performs concurrent task
submission. In addition to a data-dependence analysis based on these in-
put/output task parameters which are files, techniques such as file renaming
and file locality are applied to increase the application performance. The run-
time is built upon the Globus Toolkit 2.x APIs [3]. It is also adapted to work
with Globus Toolkit 4, Ninf-G [4] and directly with ssh.

The above reasons motivated a design of a monitoring facility that supports
the development of applications to be run in the Grid environment using the
GS system, to get deeper insight into how an application behaves in such envi-
ronments, to help in its effective and fault-tolerant execution. The dynamics of
a GS application execution necessitates the use of highly reactive tools to catch
what is going on with the application. Unfortunately, the existing monitoring
systems which provide off-line access to monitoring data do not allow to anal-
yse and react on-line to performance problems arising during the application’s
execution.

Therefore we have decided to monitor GS applications using a grid-enabled
OMIS Compliant Monitoring system (OCM-G), which was developed within
the EU IST CrossGrid project [5] for the on-line monitoring of grid appli-
cations, thus providing the user with far better knowledge of the application
behaviour during runtime. Its features allow to fit it well into the requirements
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of running an application on the Grid. In order to use this monitoring system,
one needs to instrument their libraries so that each time a function is executed
or the execution is finished, relevant monitoring data can be sent back to OCM-
G. The system gathers all the data acquired, it does not interpret it or show it to
the user. This can be done by other tools, which can connect to the monitoring
system (an example of such a tool is G-PM), access the data by issuing moni-
toring requests and visualize it. OCM-G, however, has the biggest support for
MPI applications, so making it work with GS is not that straightforward.

In this paper, we focus on the implementation ideas of adapting the OCM-
G monitoring system [6] to support GS applications. Its role is to help the
user or an automatic facility to decide when a performance problem is encoun-
tered. The original concept of performance monitoring for GS applications
with OCM-G was described in [8].

We will discuss what metrics are important to assess the performance of the
application. These metrics include standard metrics (e.g. communication time)
as well as application-specific metrics, expressed in a special language which
allows the user to define context-meaningful performance indicators. Our next
focus is on the further refinement of architectural issues of how OCM-G should
operate within GS, and its implementation details.

Our next concern is providing a front-end performance evaluation tool based
on the G-PM [7] tool which programs the OCM-G to supply monitoring data
and presents them in a meaningful graphical manner. It provides a set of met-
rics whose values can be shown to the user allowing for easy interpretation of
program execution by giving its important details.

This paper is organized as follows: Section 2 describes the requirements
needed to be fulfilled to enable monitoring of GRID superscalar applications.
Section 3 outlines the current status of work already done, especially w.r.t. li-
brary instrumentation and GRID superscalar-specific metrics with G-PM. Sec-
tion 4 provides an overview of the G-PM tool along with its current limitations.
It also shows modifications to the G-PM architecture required to address cor-
rectly the nature of the issue. Section 5 presents some of the problems we have
encountered integrating OCM-G and GS. In Section 6 we show a case study of
the use of the monitoring system for an example application. In Section 7 we
overview the functionality of GS Monitor, which is aimed at the monitoring of
application execution dependencies, and its integration with G-PM. Section 8
sums up the results and shows plans for further research.

2. Monitoring requirements for and from the GS
environment

The GRID superscalar programming paradigm is based on the master-worker
model. The user writes the master application in a fashion very similar to writing
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a sequential application. The main difference is that he/she needs to specify and
write functions which will be invoked on the Grid within worker applications.
The environment takes care of producing a “glue” between the master and work-
ers. Both the master and worker processes need to register in the OCM-G before
doing any real work to be monitored.

In order to monitor the execution of any application, the monitoring system
needs to know when specific actions during the runtime take place. This can
be achieved through library instrumentation. The libraries used by the mon-
itored application need to be wrapped into additional code which takes care
of notifying the monitor about interesting events. This way we can receive all
sorts of important data, e.g. the execution time of functions. OCM-G provides
facilities for library instrumentation.

The next step is to define GRID superscalar-specific metrics in the G-PM
performance tool. These metrics would mainly have to comprise such values as
the execution time of GRID superscalar functions and the number of function
invocations.

3. Current status of research

GRID superscalar uses two libraries, libGS-master and libGS-worker.
They are used respectively in the master and worker code. In order to instru-
ment any library in OCM-G, a specific *.omis description file has to be writ-
ten. This file tells the cg-ocmg-libinstr tool that performs instrumentation
which functions to instrument and in what way.

Therefore we have written, according to the OMIS specification, two files,
describing GS libraries. Using these files and the cg-ocmg-libinstr tool
we perform instrumentation. A question that may arise here is: if we have the
GS libraries instrumented, what about the user-defined grid-enabled functions?
Well, before every call to a user function there is a call to the IniWorker()
function and after it there is a call to the EndWorker() function. Bothe of them
are from the instrumented GS library, so in order to measure the amount of time
a user-defined function takes all we have to do is to measure the time between
IniWorker() and EndWorker(). In case the user needs more information,
there is one option more - to put the worker functions into a library and instru-
ment this library. To do this, an instrumentation description file needs to be
written, where the user can define event context parameters of his/her choice.
This mechanism gives the ability to send any kind of information to OCM-G
(it is usually used to send function parameters). A simple description file can
look like this:

int user_defined_func(char *pathname, int mode) {
{

double var1;
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double var2;
}
START:
{

var1 = //... some computations
}

string pathname;
integer mode;

END:
{

var2 = //... some computations
}
floating var3 = var1 - var2;
integer RESULT;

}

The above instrumentation sends four event context parameters to OCM-
G: function parameters - pathname and mode, the function result and a user
defined event context parameter - var3. The computations defined within the
START tag are performed before the execution of the original function while the
computations within the END tag - after the original function. Making full use of
this information in the case of user-defined worker functions would sometimes
require the use of an advanced functionality of G-PM (for instance, to write
new, applicationspecific metrics we may need to use the PMSL language [7]),
otherwise OCM-G also provides a command-line tool cg-ocmg-tool which
allows for easy extraction of this data and should be sufficient in some cases.

In order to automate the instrumentation process we have written a script
which, using the GS HOME environment variable, finds the GS runtime and
its libraries. Then it instruments them using the above description files and
the cg-ocmg-libinstr tool. The script makes also backup versions of the
libraries.

So far we have created “time spent" and count metrics for the following
GRID superscalar functions: GS {On, Off, Open, Close, FOpen, FClose,
Barrier,SpeculativeEnd}. The count metrics represent the number of func-
tion invocations in the program and the "time spent" metrics represent the amount
of time used by the application to invoke a specific function. Adding new met-
rics to G-PM is quite easy - usually each one requires just a few lines of code.
G-PM also provides an easier way to define new metrics, which does not require
modifications of G-PM code - they can be created using PMSL - Performance
Measurement Specification Language.

One of the problems we encountered was the fact that Grid Superscalar does
not pass command line parameters from the master application to workers. In
order to allow the workers to register in OCM-G, they need to have access to
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some of these parameters such as application name or address of the OCM-G
Main Service Manager. The solution we used was writing a script (which we
called monGS) through which all monitored GS applications will have to be
run. It uses the GS ENVIRONMENT variable which defines additional data that
can be passed to the workers. This variable can be defined on the master side
and duplicated in the worker environments so that workers can make use of it.

4. The G-PM performance tool and its enhancements

G-PM (Grid-enabled Performance Measurement tool) is an application that
connects to the OCM-G monitoring system and extracts information on the
application being monitored. It allows the user to choose appropriate metrics
and display styles in order to observe the execution details of the program.

A problem with G-PM when it comes to the monitoring of GS applications
is that it was originally designed for monitoring parallel applications using pro-
gramming paradigms other than GRID superscalar. Usually, G-PM connects to
OCM-G, waits for a specified number of processes to register, attaches to them
and starts monitoring them. Afterwards, the list of these processes is never
refreshed, thus G-PM cannot attach to new ones. This is presented in Fig. 1.

Figure 1. The original way G-PM attaches to processes.

Whilst being sufficient for the needs of e.g. MPI applications, it is not
enough when it comes to monitoring GS applications. The reason for this
is that they are much more dynamic. Worker processes are created whenever
the user executes one of the grid-enabled functions, they are destroyed once
these functions have finished executing. Therefore we may have millions of
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workers showing up and dying at different moments of a program execution.
Also, there are not any limitations on the amount of time workers might live,
because their tasks are defined by the user.

A solution to this problem would be to make G-PM subscribe to the events
of process registration. The tool would be notified each time a new process has
registered to OCM-G. Then the latter would attach to the newly registered pro-
cess. This would allow to always have an up-to-date list of working processes.
This scenario is presented in Fig. 2.

Figure 2. The mode of attaching G-PM to processes modified for GS needs.

There is also a need to enhance G-PM display modes to explicitly visualize
the creation and destruction of processes and to be able to show large numbers
of processes. One of the new G-PM visualization modes is the space-time
diagram [9]. We’re currently working on integrating it into the GS-dedicated
G-PM version along with adaptation to GS paradigm semantics. A simple
screenshot of the new mode can be seen in Fig. 3.

5. Other integration issues

Some of the problems have been solved but new ones arise. One of them
is the fact that there might be so many processes in a GS application that
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Figure 3. Space-time diagram.

G-PM becomes incapable of visualizing all of them. The user therefore should
have some means to choose which worker processes should be monitored and
which need not. This can be solved by disengaging the automatic instrumen-
tation of user functions. The user would add manually one line of the OCM-G
registration code in the chosen ones thus choosing not to monitor some of the
processes. Another (more automatic and easier from the user’s point of view)
solution to this problem would allow the user to define a special file, specifying
the functions to be instrumented with registration code.

Another problem is the instrumentation of one of the more important GS
functions: the Execute() function. It has a variable number of parameters,
therefore it cannot be instrumented with any of the available OCM-G instru-
mentation tools. The only solution we’ve come up with is to use some low-
level assembler instrumentation. Unfortunately, this would be hardware spe-
cific, so not very universal.

6. Case Study

Within our implementation efforts, we made use of a simple example appli-
cation provided within GS binary distribution. It uses the GS environment to
simply add integers on the Grid. Its lack of complexity is not important - we
just want to illustrate the process of monitoring. Each GS application needs to
invoke the GS On() and GS Off() functions at the beginning and at the end of
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work. These functions are instrumented and their relevant “time spent”1 and
count metrics have been inserted into G-PM so we are going to be able to get
information on their execution.

First, we start the OCM-G monitor:

cg-ocmg-monitor

This starts the monitor and returns its identifier.
Now we start the application. As command line parameters we have to pass

the identifier of the monitor and the application name, under which it will be
accessible to the OCM-G:

./simple --ocmg-appname simple --ocmg-mainsm 959c635d:8bab

All we need to do now is to run the G-PM tool in order to observe the
application behaviour:

cg-gpm simple --ocmg-mainsm 959c635d:8bab

Having started G-PM, we can choose some metrics in the measurement def-
inition window, as shown in Fig. 4. We can also decide to limit measurements
to specific hosts, nodes, processes, and functions. Let’s choose for example
the GS On delay metric (Fig. 4), which will show the time spent in the instru-
mented GS On() and GS Off() functions.

Figure 4. G-PM: defining a measurement for the instrumented functions.

Now we need to resume the program execution (by default, applications
pause their execution after having registered in OCM-G) and have a look at

1For convenience we call it “delay”
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the measurement display. We can observe that the execution of the mentioned
functions was spotted by GP-M and the relevant time was calculated and shown
in a multicurve display window (Fig. 5). This is of course a simple example,
but in a similar way we can monitor the time of any instrumented functions.

Figure 5. Measuring the time spent in the GS On() and GS Off() functions.

7. Visualization of GS applications with GSM

When analysing the performance of application execution it is often neces-
sary to correlate it with dependencies within the application. The monitoring
infrastructure of GRID superscalar is enhanced by a monitor (GSM) whose
aim is to visualize the task dependence graph at runtime, so the user can study
the structure of the parallel application and track the progress of execution by
knowing in which machine all tasks are executing and their status. The GSM
is implemented using the UDrawGraph (UDG) [10], an interactive graph visu-
alization package from the University of Bremen. Just as GRID superscalar,
the GSM assumes that the Grid consists of a master machine and worker ma-
chines. Additionally, for monitoring purposes, we identify another machine,
which does not belong to either of the aforementioned groups, we call it moni-
toring machine. By design, the GSM should run on the monitoring machine, so
as not to disturb or affect the Grid computation. The GSM can also be located
on the master or on one of the worker machines, if desired.
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Figure 6 shows an example of a GSM window, in which the user can resize
manually with the graph or even change the order of the nodes for a better
understanding of the dependencies between tasks. This is an easy way to find
out the degree of parallelism of the algorithm previously programmed with
GRID superscalar. As the graph can grow easily for more complex programs,
options for stopping the graph generation or for automatically scale / reorder
the graph are provided.

Figure 6. GRID superscalar monitor window.

The nodes representing the tasks in the GSM graph area are coloured in
order to visually show the current state of the task, as well as the machine
that computes the task. With this colour configuration, the user can easily see
which tasks have dependencies, which ones have their dependencies resolved,
the tasks currently running, and the tasks that have already finished their com-
putation. This is very important not only to monitor the execution of the GRID
superscalar application, but also allowing the user to understand the application
cannot achieve more parallelism.

In order to enable correlation between performance measurements and exe-
cution progress followed with GSM graphs, some interfaces developed for the
needs of GSM are exposed to OCM-G which captures GSM-bound events and
reports them to the G-PM tool for measurement purposes.

8. Summary

The work on providing the on-line performance monitoring for GRID su-
perscalar (GS) applications with the OCM-G monitoring system and the G-
PM performance evaluation tool is based on a set of requirements posed by GS
and feasible to fulfill by the above tools. The OCM-G attaches to the appli-
cation processes and provides monitoring data and other functionality for the
tool using the OMIS interface.
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In case of GS applications, we need to make some changes to the way G-
PM attaches to processes: whenever a process is created it must be registered
in the monitor and a corresponding event sent to the tool, so that it can attach
to the newly created process and monitor it. While the OCM-G monitoring
system under discussion provides facilities for code instrumentation: a scripting
language for describing what and how should be instrumented (using *.omis)
and an instrumenting tool which produces an instrumented version of a library,
on the front-end level the G-PM performance tool provides a metric definition
language PMSL that enables the user to define an own metric most meaningful in
the context of the application. This metric can be based on the available metrics
provided by the tool and/or so called probes inserted into the application code.

So far we have:

written description files for GS library functions

created an easy way to instrument GS libraries - the instrumentation
script

added new metrics to G-PM, allowing monitoring of GS functions

solved the worker registration problem by writing the monGS script.

This work has been carried out without modifications to GRID superscalar
code and with very slight modifications to G-PM’s code. We are currently
working on further extensions to G-PM, which are aimed at making it well
adapted to GRID superscalar needs, e.g. an advanced visualization of workers’
start-up/destruction.
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Abstract In SOA-based Grid environments service provider and service consumer usually
do not know each other. In order to establish a business relation they must inter
alia (i) create a trust relationship, and (ii) set up mechanisms to create reliable,
verifiable, and, at least in a commercial environment, also audible agreements
with respect to the services requested, delivered and consumed. In this paper we
will only briefly address (i) but concentrate on solutions for (ii) based on Service
Level Agreements (SLAs). Therefore we will give an overview on the state-of-
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workflows through the use of WS-Agreement to negotiate advance reservation
of resources to execute workflow components.
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1. Introduction

Workflows have become a common way to describe and organise a sequence
of processes, tasks, applications, or services with specific interdependencies to
build a complex job e.g. to deliver results of a complex simulation. Today’s
more stable Grid environments seem to be suitable to allow usage of non-local
resources to execute such a workflow if its resource demand exceeds local ca-
pacities. However, as the degree of control over resources changes drastically
when using resources not belonging to the own administrative domain, addi-
tional considerations have to be made and measures to be taken to allow a reli-
able, efficient, and automatic processing of these workflows. In the following
sections we concentrate on these aspects.

In service-oriented Grids service provider and service consumer potentially
belong to different administrative domains. In order to enter in a business re-
lation they must among other things (i) establish trust between them, and (ii)
set up mechanisms to create reliable and verifiable (in a commercial environ-
ment also audible) agreements with respect to the services requested, delivered
and consumed. In this paper we describe a research environment where trust
is based on the X.509 certificates issued by Certificate Authorities of the co-
operating institutions.

The recently increasing number of workshops or conferences with a focus
on Grid economics or Grid business models, which are addressing Service
Level Agreements (SLA) as one topic reflects the beginning of broader use of
SLAs as an instrument to provide and access reliable services. However, SLAs
are still far from a regular day by day use for establishing agreements between
service provider and service consumer. We will give an overview on the state
of the art, highlight possible obstacles for the deployment of SLAs, and present
a detailed example of a service improving the execution of workflows through
the use of WS-Agreement to negotiate advance reservation of resources to ex-
ecute the workflow components. The problem we address is relevant for both
sides, (i) for the service provider aiming to optimise the use of his services
and (ii) for the the service consumer aiming to optimise the workflow execu-
tion. However, in this paper we are focusing on (ii), the optimisation of the
workflow execution through reduction of the workflow makespan.

1.1 Related work

The solution proposed here uses WS-Agreement [2] as a model to formu-
late and manage SLAs. Specified by the Grid Resource Allocation Agreement
Working Group (GRAAP) of the Open Grid Forum [11] (OGF), the Web Ser-
vices Agreement Specification version 1.0 will soon be officially released and
is already been used in various implementations [16, 14, 4].
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One of these implementations is the meta-scheduling environment devel-
oped within the VIOLA [23] project. Built around the MetaScheduling Service
(MSS) [24] a WS-Agreement-based framework has been realised to provide
co-allocation of compute and network services for parallel applications that
use a message passing interface (MPI [19]) library for communication. As van
der Aalst et. al. postulate in [22], patterns can be used to characterise workflow
languages from a control-flow perspective and a workflow can be described as
a set of patterns. According to their classification, the Parallel Split pattern
describes a “point in the work flow process where a single thread of control
splits into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order.” [22]. This
is exactly the pattern to be applied in the co-allocation scheduling case, which
leads to the conclusion that co-allocation is just a special case of scheduling a
workflow. Taking this into account we decided to enhance the MetaScheduling
Service to process more general kinds of workflows.

Apart from the MSS, substantial work has been executed with respect to
scheduling in Grid environments using SLAs. It is out of scope of this paper
to give a detailed overview of the different approaches, but as an example the
DI-GRUBER [5] Grid Resource Broker is given here. DI-GRUBER is a solu-
tion to store, retrieve, and disseminate so-called usage service level agreements
(USLAs) in distributed environments with multiple scheduling decision points.
Compared to our work, the paper referenced here concentrates on the perfor-
mance and scalability of DI-GRUBER in large Grids, whereas we focus on the
gain in workflow turnaround time when applying advance resource reservation
through SLA negotiation. Therefore, the DI-GRUBER approach is something
to be taken into account once the MSS workflow solution is going to be scaled
to large environments.

1.2 Remainder of the Paper

The remainder of the paper is organised as follows. In Section 2 we give
an overview of the different approaches, use-cases, and state of the art SLA
technologies. As an example how SLAs can improve workflow execution we
describe in Section 3 the VIOLA MetaScheduling Service, its application and
experiences made. In Section 4 we present results of experiments made to
evaluate our approach. An overview about further developments for the SLA
based service orchestration in Section 5 concludes the paper.
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2. Service Level Agreements - State of the art

2.1 Technology Overview

Increasing effort has been put into research and development related to
SLAs over the last years, contributions coming from various domains. For the
creation of SLAs in Web Services-based business environments Web Service
Level Agreements [15] (WSLA) has been proposed as a language to specify
SLAs, a system to monitor the compliance of a provided service with a service
level agreement, and a workload management system that prioritises requests
according to the associated SLAs. A WSLA document contains one Parties
section; it may contain multiple Service Definitions and one Obligations sec-
tion. WSLA supports a distributed model of monitoring the SLA.

Another approach is SLAng [13] being developed at the University College
London. SLAng essentially comprises an XML schema which can be used
stand-alone for SLA definitions or together with WSDL or BPEL4WS [20].
SLAng includes QoS metrics to describe EPRs of the parties involved by pro-
viding contractual information and technical QoS information including the
metrics using Service Level Specification (SLS). As the metrics are hard-coded
in the XML-scheme SLAng is not very flexible. A framework for monitoring
SLAs has not yet been defined.

In addition the Grid domain has addressed SLAs over the last years. A frame-
work integrated into the Globus Toolkit has been proposed in [8]. It is based on
the SLA negotiation protocol defined within the Service Negotiation and Ac-
cess Protocol (SNAP) [7] which is based on the General-purpose Architecture
for Reservation and Allocation (GARA) [10]. The first implementations used
a proprietary format for specification of SLAs. However, it is expected that
WS-Agreement will be used in later versions of the Globus Toolkit.

The European NextGRID project believes that the existing approaches to
create SLAs do not sufficiently cover business aspects [18]. SLAs should
therefore also contain non-functional terms. The authors propose to view the
service from different perspectives that distinguish between the customer’s and
the service provider’s view. The shared view is defined by the SLA and will
principally contain business terms. SLAs are only to be expressed in terms
of business level objectives (BLOs). Non functional terms are used to build
the business relationship between customer and provider and help providing a
differentiating factor between service providers.

WS-Agreement as proposed by the OGF provides a domain-independent
and standard way to establish and monitor Service Level Agreements. We
decided to use WS-Agreement as a mechanism for advance reservation of re-
sources for workflow execution for several reasons, the most important being:
(i) is the result of the only active standardisation effort for a framework sup-
porting interoperable SLA specification, (ii) it is used or considered to be used
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in many other projects, (iii) it is extensible and adaptable to arbitrary domains
due to pluggable term languages, and (iv) due to the possibility to define guar-
antee terms and business values it might be used in business or service oriented
environments thus allowing an smooth migration from research application to
business use. As it is the foundation for our approach we describe it in greater
detail in Section 2.3.

2.2 Defining Service Level Objectives and Penalties

Service-level agreements are intended to provide advance knowledge about
a certain quality of a service prior to its use. Thus, the definition of the expected
or required service-level is an integral part of all SLA approaches. While the
SLA will also include additional information like e.g. technical data, provider
and consumer information, the actual definition of the guaranteed agreement
terms is one of the main aspects for using SLAs [9, 14].

Service Level Objectives (SLO) describe the condition over available ser-
vice terms (see [2] for details) that must be met. Such objectives can consist
of simple conditions for single service attributes (e.g. the guarantee of a min-
imum bandwidth for a network link). However, also complex service level
objectives can be conceived that might require combined, complex conditions
(e.g. the combined processing power of several processors and the available
main memory must meet minimal requirements).

While these SLOs alone already allow the specification of guaranteed quality
requirements, it has to be considered that a single SLA might contain several
of these objectives from which only some may apply under certain conditions.
Thus, the notion of qualifying conditions or rules can be found under which
a certain SLO applies. The definition of several SLOs with corresponding
qualifying conditions allows the modelling of complex requirements in SLAs.

While the service-level objectives provide us with the ability to define guar-
anteed quality of service, it is often necessary to identify the importance of
these guarantees. The situation might occur that one party is not able to fulfil
a guarantee, either during the negotiation towards an SLA or after a commit-
ment. Thus, a business value might be associated with the requested service
level objective to allow either the trade-off between several objectives or the
identification of penalties for violating a guarantee. The impact of an SLO
violation might differ depending on its importance.

The inclusion of such penalties is crucial for business relevant application
scenarios to cover the liability for guarantees. A single SLA might be an im-
portant building block in a broader application scenario with complex depen-
dencies and followup-cost if it is broken. As an example one might consider
an SLA for a certain network bandwidth which is used in a complex applica-
tion. Here, a consumer might create a set of SLAs with different providers
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that guarantee the availability of their resources for a certain time frame for
a certain amount of money. The violation of the single SLA by the network
provider might render the complete remaining SLAs useless for the consumer,
while these independent and bilateral SLAs will require the consumer to pay
for them. Therefore, it might be necessary to cover such risk with associating
penalties for SLA violation.

For the sake of completeness, we now introduced SLOs and penalties which
are considered key aspects for business oriented scenarios. In the following we
do not further exploit SLOs and penalties but focus in the next section on the
general foundation of supporting SLA management based on WS-Agreement.
SLO optimisation and its trade-offs in penalties and risk management is beyond
the scope of this paper and an important topic for future research.

2.3 WS-Agreement

The objective of the WS-Agreement draft specification defined by the
GRAAP Working Group is to provide a domain-independent and standard way
to establish and monitor Service Level Agreements. The specification com-
prises three major elements: (i) a description format for agreement templates
and agreements, (ii) a basic protocol for establishing agreements, and (iii) an
interface specification to monitor agreements at runtime.

A service defined in the agreement is specified as a Service Description
Terms (SDT). Service description terms can be a reference to an existing ser-
vice, a domain specific description of a service, or a set of observable proper-
ties of the service. Multiple SDTs describe different services that are provided
within the same agreement. Dependencies between these SDTs can be de-
scribed by using Guarantee Terms. Guarantee terms specify non-functional
characteristics of a service in the service level objectives, an optional qualify-
ing condition under which objectives are met, and an associated business value
specifying the importance of meeting these objectives. Additionally, guaran-
tee terms comprise a service scope, which defines a list of services a guarantee
term applies to. Thus guarantee terms can be used for defining dependencies
between different service description terms within an Agreement, or even to
specify dependencies to existing agreements by using Service References to
address related agreements.

Guarantee terms over multiple STDs can basically be used to model a spe-
cific QoS requirement within a Service Level Agreement. For example a guar-
antee term that references multiple service description terms and specifies that
these STDs have to be executed in parallel, defines at least a co-allocation of
the described services. On the other hand, guarantee terms that incorporate
Service References can be used to model decisions based on the outcome of
the related SLA. That is, a specific SDT or a set of STDs of an agreement may
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only become active, if the related agreement was processed successfully. Of
course, this can also be done for negative decisions.

Therefore guarantee terms are the key for describing workflows within WS-
Agreement. Since the content of the Guarantee Terms is largely free per defini-
tion, one can consider every necessary extension for a workflow representation
as a part of the Guarantee terms. Therefore the WS-Agreement framework
can be used for describing workflows within one SLA, or even to compose
workflows from multiple SLAs by using service references.

3. SLA based service provisioning for workflows

In this section we briefly describe the problem and suggest how SLAs can
be used to improve the processing of distributed workflows through negotiation
and advance reservation of the resources or services required to perform the
different tasks of a workflow.

3.1 The workflow resource problem

There are many application scenarios in which not just a single resource
is required but a set of resources with certain time dependencies. Assuming
that multiple resources are provided by several resource providers, such work-
flows complicate the management of resources since resource access must be
synchronised in advance to allow reliable workflow execution.

SLAs are one instrument which can be used to reserve resources in ad-
vance [16]. The time requirements and dependencies can be modelled in the
SLA to guarantee the resource availability [17]. The dependency can pose ad-
ditional importance of single SLAs in a workflow; as the different SLAs may
rely on each other, the individual business value of a single SLA might be in-
creased. As mentioned before, this can yield to the need for including higher
penalties for individual SLAs.

A main problem for the management of workflows is the negotiation to-
wards the matching SLAs. While the creation of a single SLA might be much
easier as both parties can settle on a set of agreement terms, this becomes more
complicate if the terms must match or correspond to other SLAs that are in
negotiation. For instance, if three resources must be concurrently available in
the same time frame, this time frame must be first identified. It then must be
assured that all three SLAs are finally committed (or none of them) as it has to
be prevented that the consumer gets an eventually unusable subset of SLAs.

On the other hand, if three resources necessary to perform the three tasks of
a workflow must be available in a sequential order at different times also three
SLAs have to be created. This time, it must be assured that the time depen-
dencies between the tasks of the workflow are reflected in the SLAs leading to
the reservations. Figure 1 depicts this situation. The MetaScheduling Service
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Figure 1. Mapping of a workflow to three resources respecting the time dependencies.

has to assure that t5 >= t3 >= t2 in order to respect the dependencies. At
the same time the MSS has to negotiate the individual start times as close as
possible to the end times of the respective previous tasks in order to minimise
the total duration of the workflow execution (which is a prevalent objective
scheduling jobs and workflows).

3.2 Negotiating resource usage

The negotiation required for the resource reservations (as presented in Sec-
tion 3.1) is based on SLAs describing the requirements of the workflow’s tasks
and the dependencies between them. The SLAs are derived from the resource
requests specified by the user, the format of which depending on the Grid mid-
dleware used. In the case of Globus, for example, the user includes resource
requirements into a WS GRAM job description, in the case of UNICORE they
are embedded into an Abstract Job Object (AJO). These requests are then to be
mapped to the respective SDTs. For the specification of the SLA for a work-
flow WS-Agreement is used (see Section 2.3). In the following description of
the negotiation process we refer to the UNICORE environment of the VIOLA
project. However, as the MSS is able to communicate with a specific GRAM
plug-in in the same way, the process is the same for Globus environments.
The following steps are executed to establish an agreement between client and
MSS:

1 The UNICORE client requests an agreement template from the MSS.

2 The MSS delivers an EPR of the agreement to the client.
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3 The client fills in the template with the workflow-specific details. With
respect to the description of resource requests JSDL [3] is used within
the SLA and a library to map the UNICORE-specific terms to JSDL.

4 The client sends the completed agreement template back to the MSS.

5 The MSS starts to negotiate the reservation of the resources for the work-
flow tasks with the respective local scheduling systems of the resource
providing sites according to the SLOs described in the agreement. The
negotiations are also based on individual SLAs. This time the MSS plays
the role of the client vis-a-vis the resource providers.

6 Once all individual SLAs between the MSS and the different resource
providers are in place the MSS accepts the agreement proposed by the
client. Otherwise the client is informed that the MSS can not accept
the agreement. In this case the user is notified and may modify the
requirements for his workflow to adopt to the situation and repeat the
negotiation from the beginning.

In case of one or more individual agreements with resource providers fail, the
MSS will cancel all other accepted agreements. This is due to the fact that
the current version of WS-Agreement does not allow modification of accepted
agreements thus all agreements have to be negotiated from the beginning.

3.3 MSS Implementation

As mentioned in Section 3.2 the German VIOLA project develops among
other components a meta-scheduling environment providing resource reserva-
tions based on WS-Agreement. The immediate objective of this development
is to co-allocate computational and network resources in a UNICORE-based
Grid, but we designed the environment to support arbitrary types of resources
and to be integrated into different Grid middleware systems. The main inte-
gration effort to get the MSS working on top of other middleware, like e.g.
Globus, is to implement the client-side interface of the MetaScheduling Ser-
vice. Since it is beyond the scope of this paper to explain the system in detail
we refer to [24] for a complete architectural description of it and to [21] for the
definition of the negotiation protocol currently implemented.

Figure 2 sketches the basic architecture of the meta-scheduling environ-
ment and its integration into the UNICORE Grid middleware. The VIOLA
Meta-Scheduling Service communicates with a client application using WS-
Agreement, it receives the workflow-specific resource requests as described in
Section 3.2 wrapped into a Meta-Scheduling (MS) request, and it returns reser-
vations for all of these resources. To interact with varying types of scheduling
systems we use the adapter pattern approach. The role of an Adapter is to
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Figure 2. High-level meta-scheduling architecture.

provide a single interface to the Meta-Scheduling Service by encapsulating the
specific interfaces of the different local scheduling systems. Thus the Meta-
Scheduling Service can negotiate resource usage by exploiting a single inter-
face independent of the underlying resource type. To achieve this, the Meta-
Scheduling Service first queries local scheduling systems for the availability
of the requested resources and then negotiates the reservations across all local
scheduling systems. These, in order to participate in the negotiation process,
have to be capable and willing to let the MetaScheduling Service reserve re-
sources in advance by offering data about job execution start and stop times,
and provide at least partial access to their local schedules, e.g. by publishing
information about available free time slots.

4. Results

In order to predict the gain in turnaround time in real world systems by us-
ing SLA’s for workflows that contain job dependencies we have accomplished
a series of experiments. In these experiments we used simple directed acyclic
graphs (DAG), where the DAGs were linear lists (node indegree <= 1, outde-
gree <= 1) and the depth of the graph was 3 (see Figure 3). We evaluated the
gain in turnaround time for these DAGs by using best effort jobs and advance
reservation jobs for the workflow execution. The test scenario is constructed
as follows. As test environment we used a simple MSS setup consisting of 3
independent systems, each utilised with a basic load derived from real world
log files [25] before submitting the workflow. Each SLA consists of 3 jobs
where each job is scheduled on one system. The resource requirements of the
jobs range from [6/8/8] to [48/64/64], where the numbers specify the number
of requested nodes (respectively CPUs) for a job. The job runtimes range from
60 minutes up to 240 min. Within one test row all jobs have the same runtime.
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Figure 3. Simple DAG describing the workflows.

For best effort SLAs the first job is submitted to the resource management
system and subsequent jobs are scheduled as soon its predecessor has finished.
For advance reservation SLAs the jobs are scheduled sequentially at submis-
sion time by using the first fixed fit strategy. Once the first job was scheduled
the estimated end time of the job is determined and the next subsequent job is
scheduled using the determined end time of its predecessor. The start times of
a job must not change after it was scheduled. Figure 4 shows the results of our
experiments.

Figure 4. Gain in turnaround time using Advance Reservation.
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At a first glance surprisingly for workflows with low resource requirements
and short runtimes it turns out, that the best effort scheduling strategy behaves
better in our experiments than the advance reservation strategy. However, this
results from the fact that the advance reservation jobs in our test scenario are
scheduled at a fixed start time and therefore do not profit from potential back-
filling possibilities, e.g. prior jobs that occupied the system resources finish
earlier. This problem can be resolved easily if scheduling systems allow back-
filling for advance reservation jobs until an requested time (here the estimated
end time of the predecessor job) and furthermore provide the functionality to
update this time later on. Given that this functionality is in place Grid sched-
uler can be constructed employing the advance reservation strategy, where the
turnaround time is at least as good as for best effort jobs, and the gain in the
turnaround time might even increase compared to our test results.

5. Future Perspectives

Work on performance evaluation for workflow planning with SLAs will be
continued considering the observations described above. Future work therefore
will mainly focus on the areas:

further evaluation of the approach based on different DAGs and jobs

moving to support a standard workflow description language (or a suit-
able and efficient mechanism to map different languages onto the one
selected for the UNICORE environment)

extending WS-Agreement to allow for a more flexible negotiation pro-
cess and to support modifications of existing agreements.

Addressing the first aspect we will investigate the ongoing activities related
to workflows in the CoreGRID [6] Institute on Grid Information, Resource
and Workflow Monitoring Services. One of the institute’s research group’s is
working on Compatibility and Conversion of different Grid Workflow Descrip-
tion Languages [12]. Based on the results we will decide whether to adopt
a de-facto standard like BPEL (or BPEL4WS) or to integrate the mapping
mechanism and to stay with the UNICORE workflow description language.
In either case only a single procedure to convert a workflow description to a
WS-Agreement will be necessary in the user’s client, e.g. a UNICORE client,
while allowing the user to select the most appropriate language to describe his
workflow.

Experiences made so far show that the number of different resources needed
for a complex workflow will often be higher than for a single application that
is distributed across several resources, like in the co-allocation scenarios of VI-
OLA. The process of negotiating the reservation is based on WS-Agreement
version 1.0 which does not support changes of the offer or later re-negotiation.
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Thus in case of a service provider not being able to match exactly the require-
ments of a client now the agreement is cancelled and has to be initiated from
the beginning. Even worse, in case of a workflow negotiation including sev-
eral service providers currently the whole workflow usually will not complete
if one of the service providers is unable to deliver the service agreed upon and
re-negotiation is not possible.

Extending WS-Agreement to allow for a more flexible negotiation process
and to support modifications of existing agreements will help to overcome
the potential waste of resources. The GRAAP working group recently started
working on these extensions for the next version of WS-Agreement. The group
is gathering requirements and contributions, e.g. as drafted in [1] to define a
standardised extension of the current protocol.
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Abstract One important contribution to the community that is developing Grid middle-
ware is the definition and implementation of benchmarks and tools to assess the
performance and dependability of Grid applications and the corresponding mid-
dleware. In this paper, we present an experimental study that was conducted
with OGSA-DAI, a popular package of middleware that provides access to re-
mote data resources thought a unified Web-service front-end. The results show
that OGSA-DAI is quite stable and performed quite well in scalability tests, ex-
ecuted on Grid5000. However, we also demonstrate that OGSA-DAI WSI is
currently using a SOAP container (Apache Axis1.2.1) that suffers from severe
memory leaks. We show how the default configuration of OGSA-DAI is not af-
fected by that problem, but a small change in the configuration of a Web-service
may lead to very unreliable execution of OGSA-DAI.

Keywords: Dependability benchmarking, grid middleware.
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1. Introduction

Grid middleware and grid services are still in its infancy. Until they reach
the maturity curve it is important to devise some benchmarks and tools to as-
sess the performance, dependability and security level. These benchmarks and
tools should be easily applied to different grid services implementations that
follow standard protocols. They should also present some convincing results to
the scientists and developers that are working with Grid middleware that was
developed in R&D projects. One of the most popular Grid middleware pack-
ages is OGSA-DAI, a package that allows the remote access to data-resources
(files, relational and XML databases) through a standard front-end based on
Web-services specification. In this paper we present an experimental study
of the performance and dependability level of OGSA-DAI, by making use
of a benchmarking tool, called QUAKE, and running the experiments in the
Grid5000 infrastructure. The experiments allowed us to collect some interest-
ing results to the community that is using OGSA-DAI, the team of developers
behind it and to the researchers that are studying the dependability metrics of
Grid middleware, as is the case of our two groups: INRIA Grand-Large and
the University of Coimbra.

2. Related Works

The idea of dependability benchmarking is now a hot-topic of research and
there are already several publications in the literature. The components of
a dependability benchmark have been defined in [1]. In [2] is proposed a
dependability benchmark for transactional systems (DBench-OLTP). Another
dependability benchmark for transactional systems is proposed in [3]. In [20]
the authors present a proposal for the classification of dependability in trans-
actional database systems [4]. A dependability benchmark for operating sys-
tems was proposed by [5]. That benchmark was targeted for the study of the
operating system robustness in the scenario of faulty applications. Another
study about the behavior of the operating system in the presence of software
faults in OS components was presented in [6]. The research presented in [7]
addresses the impact of human errors in system dependability. In [8] is pre-
sented a methodology to evaluate human-assisted failure-recovery tools and
processes in server systems. Another work was presented in [9] that focus
on the availability benchmarking of computer systems. Research work at Sun
Microsystems defined a high-level framework targeted to availability bench-
marking [10].

At IBM, the Autonomic Computing initiative is also developing bench-
marks to quantify the autonomic capability of a system [11]. In that paper
they have discussed the requirements of benchmarks to assess the self-* prop-
erties of a system and they proposed a set of metrics for evaluation. In [12] is
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Figure 1. OGSA-DAI Architecture.

presented a further discussion about benchmarking the autonomic capabilities
of a system. In [13] is presented an approach to conduct benchmarking of the
configuration complexity. A benchmark for assessing the self-healing capabil-
ities of a potential autonomic system was presented in [14]. In [15] the authors
present a dependability benchmark for Web-Servers. This tool used the ex-
perimental setup, the workload and the performance measures specified in the
SPECWeb99 performance benchmark.

The dependability benchmark tool that is presented in this paper is targeted
to Grid and Web-services. It has been used to assess the dependability level of
SOAP-servers [16], Web-service specifications [17] and tools of Grid middle-
ware. In this paper, we will present a benchmarking study that was conducted
with OGSA-DAI middleware.

3. OGSA-DAI Overview

OGSA-DAI [18] is a middleware platform that allows data resources, such
as relational or XML databases, to be accessed as Web-services. The software
includes a collection of components for querying, transforming and delivering
data in different ways, and a simple toolkit for developing client applications.
In a short sentence, OGSA-DAI provides a way for users to Grid-enable their
data resources.
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The presentation layer encapsulates the functionality required to expose data
service resources using web service interfaces. The Web-service front-end can
run over two types of specifications: Web Services Interoperability (WSI) [19]
and Web Services Resource Framework (WSRF) [20]. The WSI version runs
over Jakarta Tomcat [21] and Axis [22] while the WSRF version runs with the
Globus Toolkit [23]. The client layer permits that every client can interact, in
a transparent way, with a data resource via a corresponding Web-service. The
front-end of OGSA-DAI is a set of Web-services that in the case of WSI re-
quire a SOAP container to handle the incoming requests and translate them to
the internal OGSA-DAI engine. Figure 1 presents the main internal modules
of OGSA-DAI implementation. While the detailed description of the OGSA-
DAI internal is out-of-scope of this paper (more information can be found in
[18]) the interesting aspect to take into account is the Web-service that han-
dles the transport layer that uses SOAP messages. Our benchmarking tool can
be easily applied to OGSA-DAI since it makes use of standard Web-service
specifications. At the moment OGSA-DAI middleware is used in several im-
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portant Grid projects [24], including: AstroGrid, BIoDA, Biogrid, BioSim-
Grid, Bridges, caGrid, COBrA-CT, Data Mining Grid, D-Grid, eDiaMoND,
ePCRN, ESSE, FirstDIG, GEDDM, GeneGrid, GEODE, GEON, GridMiner,
InteliGrid, INWA, ISPIDER, IU-RGRbench, LEAD, MCS, myGrid, N2Grid,
OntoGrid, ODD-Genes, OGSA-WebDB, Provenance, SIMDAT, Secure Data
Grid, SPIDR, UNIDART and VOTES. This list is clear representative of the
importance of OGSA-DAI and the relevance of this particular benchmarking
study.
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4. QUAKE: A Benchmarking Tool for Grid Services

QUAKE [16] is a dependability benchmark tool to assess the performance
and dependability level of Grid and Web-services. It is composed by a set of
software components, as presented in Figure 3.

The main components are the Benchmark Management System (BMS) and
the System-Under-Test (SUT). The SUT consists of a SOAP-server running
some Web/Grid service. The application under test is not limited to a SOAP-
based application: in fact, the benchmark infrastructure can also be used with
other examples of client-server applications that use other different middleware
technologies.

There are several client machines that invoke requests in the server using
SOAP requests. The Benchmark Management System (BMS) is a collection
of software tools that allows the automatic execution of the benchmark. The re-
sults generated by each benchmark run are expressed as throughput-over-time,
the total turnaround time of the execution, the average latency, the functionality
of the services, the occurrence of failures, the characterization of those failures
(crash, hang, zombie-server), the correctness of the final results and the fail-
ure scenarios that are observed at the client machines (explicit error messages
or timeouts). In this study, we used the burst distribution which generates the
maximum workload.

There are some other tools in the market that can be used for performance
benchmarking of SOAP Web-services, namely: SOAtest [25] and TestMaker
[26]. However those tools are mainly targeted for testing the functionality
of the SOAP applications and to collect some performance figures. QUAKE
has some fundamental differences: it is targeted to study the dependability
attributes, it includes a different approach for the workload distributions, a
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stress-load module to affect the resources of the system-under-test and it is
mostly targeted to the collection of dependability metrics.

5. Experimental Results

In this section, we present a benchmarking study we have conducted with
OGSA-DAI by using the QUAKE tool in a large-scale grid infrastructure: the
Grid5000.

Grid5000 is an experimental platform dedicated to computer science for the
study of grid algorithms, and partly founded by the French incentive action
"ACI Grid". Grid5000 consists of 14 clusters located in 9 French cities with
40 to 450 processors each, with a total of 1928 processors. Most of the tests
were executed on Grid Explorer (Orsay) which is a major component of the
Grid5000 platform. All computers are dual-processors AMD Opterons run-
ning at 2.0 GHz with 2 GB of RAM, and each computer has a 80 GB IDE
hard drive and a GigaEthernet network interface card. For the scalability ex-
periments, 3 clusters of Grid5000 were used. We used 200 machines of the
previously mentioned Orsay’s cluster, 50 machines of the Sophia’s cluster and
50 machines of the Lille’s cluster. Using this configuration, we were able to
scale up to 300 clients during our experiments. We deployed a Debian Linux
operating system, with a kernel 2.6.13-5, including Java 1.5.0, Tomcat 5.0.28,
Axis 1.2.1 and OGSA-DAI WSI 2.2.

5.1 Performance Overhead

The first thing we wanted to know about OGSA-DAI was the price to pay
for using it. Since OGSA-DAI is a middleware that stands between users and
data-resources it adds complexity to a path that already has some. So, our first
experiment was conducted in order to assess performance overhead caused by
one more middleware package between data resources and the user application
of such resources. Our approach to understand if there was any performance
price to pay when using OGSA-DAI was simply comparing performance met-
rics (Latency and Throughput) with other mechanisms of accessing data re-
sources, namely, direct JDBC connection (1-Tier Model) and a Java Server
Page (JSP) accessed by browser making use of the JDBC connector to access
the same DB (3-Tier Model). The results are presented in Figure 4.

As expected, in a 10 minute run, we could observe that OGSA-DAI is 315
times slower than JDBC and about 5 times slower than the 3-tier model JSP. In
addition, OGSA-DAI has a significantly lower throughput than the other two
models. It processes 10 times less request than the direct JDBC access and 5
times less than the JSP. In the presented 10 minute run OGSA-DAI processed
342.827 less request than the JDBC and less 154.320 request than the JSP. The
conclusion we must draw from these numbers and figures is that the first price
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Figure 4. JDBC, JSP, and OGSA-DAI Performance.

to pay when using OGSA-DAI to expose data resources is a significantly short
performance when compared to other ways of exposing the same resources.

5.2 Benchmarking Tomcat+Axis

As OGSA-DAI is a middleware on top of Tomcat and Axis, the first study
was to measure the dependability level of a simple Web-service application
deployed with Tomcat/Axis running in a large-scale cluster of Grid5000. The
test was executed with 40 clients and 100,000 requests per client. We used a
synthetic application that executes a very simple computation. The versions
of the WSI container were: Tomcat 5.0.28 and Axis 1.2.1. The results are
presented in Figure 5.
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Figure 5. Results with Tomcat/Axis.

In Figure 5(a) we can see that the throughput is decreasing over time until
a certain point where the server crashes: at this point only 665,078 requests
were executed, instead of the 4,000,000 that were expected. In Figure 5(b) we
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can see the latency increasing over time until the point where there was a crash
(approximately 70.5 minutes of test running). This first study was conducted
with a very synthetic application. Then, we decide implement a Web-service
on Axis that was working as a front-end to access a database: it receives a
SQL query and returns the resulting rows. The results are also taken with 40
clients and are presented in Figure 6. We can see the results are quite similar
to the first experiment. The throughput decreases over time until the server has
a crash after 80 minutes of execution.
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Figure 6. Second experiments with Tomcat/Axis (database synthetic application).

This was the same behavior we have observed in [16]. In that paper we pre-
sented a detailed study of the reliability of SOAP and we have demonstrated
that Axis1.3 suffers from severe memory leaks. Some sort of corrective mech-
anism is mandatory to avoid the failure of the applications that are using that
SOAP implementation. It was that particular study that drove our curiosity
and our concern to assess the dependability level of OGSA-DAI: if Axis 1.2
and 1.3 suffer from severe memory leaks and OGSA-DAI makes use of Axis
1.2.1 what would be resulting reliability of the applications that make use of
OGSA-DAI data grid services? Results are presented in the next subsection.

5.3 Benchmarking OGSA-DAI

Since OGSA-DAI uses the Axis1.2.1 platform to deploy its own Web-services
it is legitimate for one to assume that OGSA-DAI should be prone to the severe
effects of the memory leaks from Axis. To find evidences, we conducted several
tests to the OGSA-DAI platform in a large-scale cluster of Grid5000. The first
experiment was conducted with 25 nodes, each one executing 100,000 requests.
Figure 7 presents the observed throughput and latency.

As can be clearly seen the performance of OGSA-DAI remained quite stable
during all the experiment that was conducted with a maximum burst distribution.
The throughput was fairly stable with an average value of 71.43 requests/sec.
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Figure 7. Results with OGSA-DAI (WSI).

The latency had an average value of 349.1 ms. We repeated this benchmark but
increasing the number of clients to see the impact of scale on the OGSA-DAI
middleware. Different experiments were executed with 25, 100, 200 and 300
clients. The results are presented in Figure 8(a).
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Figure 8. Impact of scale and threshold value on OGSA-DAI (WSI).

We can see that the throughput is the same for every experiment and the
latency increases linearly. The server can perfectly handle 300 simultaneous
clients requesting accesses to data-services using a burst distribution. It is clear
that OGSA-DAI has some congestion-flow control mechanism that sets up the
throughput to a fixed value despite the number of simultaneous clients. Al-
though this could explain the impact of scale in the server, it does not explain
why the memory leaks present in Axis do not manifest in the OGSA-DAI envi-
ronment. We then started to look to some of the OGSA-DAI configuration pa-
rameters, and in particular to the main parameters that establish some conges-
tion flow mechanism: (i) maximum simultaneous request: define how many
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requests can be processed simultaneously, and (ii) request queue length: this
is the queue where the request are stored before being processed.

For all the previous tests the maximum number of simultaneous requests
was the same than the number of clients: for example, with 100 clients, the
maximum simultaneous request was set up to 100. The queue length was al-
ways 20.

We ran the scalability test again but with a value of half to the maximum
simultaneous requests and a larger queue to see the impact of these parameters
on performance. The results we got were basically the ones presented in Figure
6. So, apparently, these parameters have no influence on the performance, at
least at this scale. After this first set of results, we still had no answers to our
fundamental question: how OGSA-DAI can be so stable if it uses Axis1.2.1
that suffers from memory leaks?

We conducted some further experiments and some code-inspections to the
OGSA-DAI implementation, trying to understand its inner details. One thing
that recalled our attention was a method that is called before executing an op-
eration that consumes memory. This method calculates the memory needed for
that operation to take place, and then checks if the total consumed memory is
above a predefined threshold. If it is not, then the operation can be executed.
Otherwise the middleware makes a set of explicit calls to the JVM garbage col-
lector to free up some memory. The default threshold for memory consumption
is 85% of the JVM Heap, so all tests we ran previously used this value. We
conducted some other tests by changing the threshold value: 50%, 85%, 99%
and with the mechanism turned off. The idea was to see if this was the main
mechanism responsible for the stability of OGSA-DAI server. The results are
presented in Figure 8(b).

This mechanism forces a more frequent usage of the garbage collection
mechanism but it is not a mechanism per se that provides the robustness to the
OGSA-DAI middleware. When we turned off this mechanism we saw some
small instability in the memory consumption but the server never crashed. Fi-
nally, there was one last thing that caught our attention: the fact that the Web-
service deployed with OGSA-DAI was using a scope set to application. This
means the WS application is only instantiated once being then shared with
every request it receives and by every different client.

This is not the usual way of deploying Web-services unless the Web-service
is completely stateless or provides global data that should be shared by all the
clients. It is quite usual that a Web-service application needs to store informa-
tion about a particular session so it can correlate future requests to previous
ones made by the same user. These kinds of applications often use scope set to
session so that they can manage the information about the clients in a session-
based model.
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As stated in section 3, OGSA-DAI makes use of Web-services as a front-
end layer to the data resources. It really does not need to correlate different
requests and the Web-service is completely stateless; it just needs to create
an interface which will be the same to every request despite the client where
it comes from. This clearly justifies the use of the application scope in the
deployed Web-services. But this raises the question: could this be the answer
to the stable behavior of OGSA-DAI?

To understand the impact of the scope of the Web-services in the robust-
ness of the applications we conducted two different tests: (i) one test with a
WS deployed over Axis using an application scope, and (ii) another test using
OGSA-DAI but the scope was changed to session.

In both tests we used the QUAKE tool, with 10 simultaneous clients that
were programmed to make 10 million requests into the server in the overall.
Figure 9 shows the results of the synthetic application running on Axis1.2.1
with an application scope Web-service. Figure 10 represent the results of the
OGSA-DAI with a session equal to scope.
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Figure 9. Experiment with Tomcat/Axis (application scope Web-service).

In Figure 9, we can see that Axis1.2.1 does not suffer from memory leaks
if the Web-service is deployed with scope set to application. On the contrary,
we can see in Figure 10 that OGSA-DAI runs very unstable if the scope of the
Web-service is set to session: the application with OGSA-DAI crashes after
42.5 minutes of test execution and was only able to fulfill 2020 requests. The
throughput was very unstable and reached very low values. These results are
quite interesting and finally explain why the default configuration of OGSA-
DAI was so stable.

The reader should compare the results from Figure 10 with Figures 7 and
8: in these two Figures we could see that OGSA-DAI was very stable and
provided a sustained throughput of 70 req/sec, even when we increased the
number of clients to 300. In Figure 10 we can see that the throughput is very
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Figure 10. Experiment with OGSA-DAI (session scope Web-service).

unstable and very low in comparison (average value of 0.78 reqs/sec). Simi-
lar observations to the latency of requests: in Figure 8 the results taken with
300 clients have shown an average latency of 4000 msecs. In Figure 10 we
can see an average latency of 11.842 msecs (almost 12 seconds) with only 10
simultaneous clients.

All these results are due to the fact the default configuration of OGSA-DAI
sets the scope of the Web-service to application. In this case OGSA-DAI does
not trigger the memory leaks of Axis1.2.1. If the scope is set to session, the
OGSA-DAI will trigger the severe memory leaks of Axis1.2.1 and the resulting
reliability will be a major point of concern.

6. Conclusions

In this paper we have presented the first results from a benchmarking study
of OGSA-DAI. The good news from these initial results are the fact that OGSA-
DAI is quite stable and performs considerably well in scenarios of scalability
and workload testing, as was the case of that experiment with 300 clients in
the Grid5000. These are good news for all those Grid Projects that are making
use of OGSA-DAI and it is a very positive acknowledge of the good work that
has been doing by the OGSA-DAI team. On the other hand, we have proved
that the stability of OGSA-DAI is due to the fact it makes of application scope
Web-services, which fortunately do not trigger the memory leaks of Axis1.2.1.
If by any reason, a programmer needs to implement sessions for the different
clients and have to change the scope of the Web-service to session, then there
will be a critical problem in terms of reliability of the OGSA-DAI middleware.

This is an interesting lesson that should be taken into account by the team
that is developing OGSA-DAI middleware.

In this paper, we have mainly proved that having a dependability bench-
marking tool for Web-services and grid-enabled application is crucial for the



Dependability Evaluation of the OGSA-DAI Middleware 235

community. By using our QUAKE tool we were able to detect and understand
the reasons for the stability of OGSA-DAI but also the potential leaks that
may turn it a very unreliable middleware package, if it triggers the memory
leaks of the underlying Axis implementation. Good news for the community
is the fact that Axis 2 has already been released and this new version solves
most of the problems of the previous versions. However, there are still a lot of
software packages (like OGSA-DAI) that make use of the Axis1.2 or 1.3 ver-
sions and thereby may potentially suffer from serious memory leaks if they use
session scope Web-services. In the future we plan to continue our work on de-
pendability benchmarking for Web-services and we are studying the potential
integration of QUAKE with FAIL-FCI [27].
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